
Best
Available.

Copy

tr' A -A281 497 _

Position Papers
for the

First Workshop on
Principles and Practice of
Constraint Programming

April 28-30, 1993
Newport, Rhode Island

SDrIc
armLECTE

$JuLA 31994,

VO 94-21657

Sponsored in part by the Office of Naval Research

Organized by Brown University

Reference materials for workshop participants only-Do not distribute

94 7 1 2 4 36 6

Position Papers

for the
First Workshop on

Principles and Practice of
Constraint Programming

April 28-30, 1993
Newport, Rhode Island

Sponsored in part by the Office of N3val Research

Organized by Brown University

Reference materials for workshop participants only-Do not distribute

ii

ionossion For

By -

FAvailability Codes
IAvw.U - rnd/or

Contents -j .1

Hassan Ait-Kaci and Andreas Podelski (DEC Paris).
Entailment and Disentailment of Order-Sorted Feature Constraints 1

Alexander Brodsky and Catherine Lassez (IBM Watson).
Separability of Polyhedra and a New Approach to Spatial Storage 6

Allen L. Brown Jr., Surya Mantha, and Toshiro Wakayama (Xerox SRL).
Constraint Optimization using Preference Logics: A New Role for Modal Logic 14

Isabel F. Cruz (Brown University).
Using a Visual Constraint Language for Data Display Specification 24

St~phane Donikian (IRISA) and Gerard H~gron (Ecole des Mines de Nantes).
Constraint Management in a Declarative Design Method for 3D Scene Sketch Modeling 36

Thomas DubM and Chee-Keng Yap (New York University).
The Geometry in Constraint Logic Programs ... 46

Franqois Fages (LIENS and LCR Thomson).
On the Semantics of Optimization Predicates in CLP Languages 53

Tim Fernando (CWI Amsterdam).
A Higher-Order Extension of Contraint Programming in Discourse Analysis 62

Eugene C. Freuder and Paul D. Hubbe (University of New Hampshire).
A Disjunctive Decomposition Control Schema for Constraint Satisfaction 72

Thom Fruhwirth (ECRC Munchen) and Philipp Hanschke (DKFI Kaiserslautern).
Terminological Reasoning with Constraint Handling Rules ... 82

Hong Gao and David S. Warren (SUNY at Stony Brook).
A Powerful Evaluation Strategy for CLP Programs .. 92

Michael Gleicher (Carnegie Mellon University).
Practical Issues in Programming Constraints ... 100

Seif Haridi, Sverker Janson, Johan Montelius, Torkel Franz~n, Per Brand, Kent Boortz, Bj6rn
Danielsson, Bj6rn Carlson, Torbjorn Keisu, Dan Sahlin and Thomas Sj6land (SICS).
Concurrent Constraint Programming at SICS with the Andorra Kernel Language 109

Jean-Louis imbert (C.I.A. Parc Scientifique et Technologique de Luminy).
Fourier's Elimination: Which to Choose? ... 119

Philippe J~gou (Universit6 de Provence).
Domains Decomposition in Finite Constraint-Satisfaction Problems 132

Mark Johnson (Brown University).
Memoization in Constraint Logic Programming ... 140

Simon Kasif (John Hopkins University) and Arthur L. Delcher (Loyola College).
Local Consistency in Parallel Constraint-Satisfaction Networks 149

Walid T. Keirouz, Glenn A. Kramer, and Jahir Pabon (Schlumberger Laboratories).
Exploiting Constraint Dependency Information For Debugging and Explanation 156

iii

Claude Kirchner, Hdlbne Kirchner, and Marian Vittek (INRIA Lorraine and CRIN).
Implementing Computational Systems with Constraints .. 166

Gabriel M. Kuper (ECRC Miinchen).
Aggregation in Constraint Databases ... 176

Francois Major (National Institutes of Health), Marcel Turcotte, and Guy Lapalme (Universit6 de
Montrial).
Constraint Satisfaction in Functional Programming ... 184

Ken McAloon and Carol Tretkoff (CUNY and Brooklyn College).
21p: Linear Programming and Logic Programming .. 189

Francisco Menezes, Pedro Barahona (Universidade Nova de Lisboa), and Philippe Codognet
(UNRIA Rocquencourt).
An Incremental Hierarchical Constraint Solver ... 201

Scott Meyers, Carolyn K. Duby, and Steven P. Reiss (Brown University).
Constraining the Structure and Style of Object-Oriented Programs 211

Spiro Michaylov (Ohio State University) and Frank Pfenning (Carnegie Mellon University).
Higher-Order Logic Programming as Constraint Logic Programming 221

Ugo Montanari and Francesca Rossi (Universith di Pisa).
Constraint Satisfaction, Constraint Programming, and Concurrency 230

William J. Older (Bell Northern Research) and Frederic Benhamou (Facultk des Sciences de
Luminy).
Programming in CLP(BNR) .. 239

Dinesh K. Pai (University of British Columbia).
Robot Programming and Constraints ... 250

William C. Rounds and Guo-Qiang Zhang (University of Michigan, Ann Arbor).
Constraints In Nonmonotonic Reasoning ... 258

Michael Sannella (University of Washington, Seattle).
The SkyBlue Constraint Solver and Its Applications ... 268

Tony Savor and Paul Dasiewicz (University of Waterloo).
A Real Time Extension to Logic Programming Based on the Concurrent Constraint Logic
Programming Paradigm .. 279

Douglas R. Smith (Kestrel Institute).
Synthesis of Constraint Algorithms ... 288

Terence R. Smith and Keith Park (University of California, Santa Barbara).
Constraint-Based Languages for Scientific Database and Modeling Systems 294

Allen C. Ward (University of Michigan, Ann Arbor).
Set-based Concurrent Engineering .. 299

Ying Zhang and Alan K. Mackworth (University of British Columbia).
Constraint Programming in Constraint Nets ... 303

Richard Zippel (Cornell University).
A Constraint Based Scientific Programming Language .. 313

Author Index 319

iv

Entailment and Disentailment of Order-Sorted Feature Constraints

(SummaryY

Hassan AYt-Kaci Andreas Podelski
Digital Equipment Corporation

Paris Research Laboratory
85, avenue Victor Hugo

92500 Rueii-Malmaison, France
{hak, podelski}@prl .dec. com

Abstract

LIFE uses matching on order-sorted feature structures for passing arguments to functions. As opposed to
unification which amounts to normalizing a conjunction of constraints, solving a matching problem consists of
deciding whether a constraint (guard) or its negation are entailed by the context. We give a complete and consistent
set of rules for entailment and disentailment of order-sorted feature constrCnrts. These rules are directly usable for
relative simplification, a general proof-theoretic method for proving guards in concurrent constraint logic languages
using guarded rules.

I Introduction

LIFE [5,4] extends the computational paradigm of Logic Programming in two essential ways:

"* using a data structure richer than that provided by first-order constructor terms; and,

"* allowing interpretable functional expressions as bonafide terms.

The first extension is based on 0-terms which are attributed partially-ordered sorts denoting sets of objects [1, 2]. In
particular, ,-tenns generalize first-order constructor terms in their rOle as data structures in that they are endowed with
a unification operation denoting type intersection.

The second extension deals with building into the unification operation a means to reduce functional expressions
using definitions of interpretable symbols over data patterns. The basic insight is that unification is no longer seen
as an atomic operation by the resolution rule. Indeed, since unification amounts to normalizing a conjunction of
equations, and since this normalization process commutes with resolution, these equations may be left in a normal
form that is not a fully solved form. In particular, if an equation involves a functional expression whose arguments are
not sufficiently instantiated to match a definiens of the function in question, it is simply left untouched. Resolution
may proceed until the arguments are proven to match a definition from the accumulated constraints in the context [31.
This simple idea turns out invaluable in practice.

This technique-delaying reduction and enforcing determinism by allowing only equivalence reductions-is
called residuation [3]. It does not have to be limited to functions. Therefore, we explain it for the general case of
relations. Intuitively, the arguments of a relation which are constrained by the guard are its input parameters and
correspond to the arguments of a function. This has been used as an implicit control mechanism in general concurrent
constraint logic programming schemes; e.g., the logic of guarded Horn-clauses studied by Maher [9], Concurrent
Constraint Programming (CCP) [101. and Kernel Andorra Prolog (KAP) 18]. These schemes are parameterized with
respect to an abstract class of constraint systems. An incremental test for entailment and disentailment between
constraints is needed for advanced control mechanisms such as delaying, coroutining, synchronization, committed
choice, and deep constraint propagation. LIFE is formally an instance of this scheme, namely a CLP language

* Full version to appear in 161.

1

using a constraint system based on order-sorted feature (OSFM structures [51. It employs a related, but limited,
suspension strategy to enforce deterministic functional application. Roughly, these systems are concurrent thanks to
the new effective discipline for procedure parameter-passing that can be described as "call-by-constraint-entailment"
(as opposed to Prolog's call-by-unification).

The most direct way to explain the issue is with an example. In LIFE, one can define functions as usual; say:

fact(O) -.. 1.
fact(N : int) -. N *fact(N - I).

More interesting is the possibility to compute with partial information. For example:

minus(negint) . posint.
minus(posint) -. negint.
minus(zero) - zero.

Let us assume that the symbols int, posint, negina, and zero have been defined as sorts with the approximation ordering
such that posint, zero, negint are pairwise incompatible subsoils of the sort int (i.e., posint A zero = -I, negintA zero =
.L,posint A negint = 1). This is declared in LIFE as int := {posint; zero; negint}. Furthennore, we assume the sort
definition posint := {posodd; poseven}; i.e., posodd and poseven are subsorts of posin and mutually incompatible.

The LIFE query Y = minus(X : poseven)? will return Y = negint. The sort poseven of the actual parameter is
incompatible with the sort negint of the formal parameter of the first rule defining the function minus. Therefore, that
rule is skipped. The sort poseven is more specific than the sort posint of the formal parameter of the second rule.
Hence, that rule is applicable and yields the result Y = negint.

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is incompatible with the sort of the formal
parameter of every rule defining minus.

Thus, in order to determine which of the rules, if any, defining the function in a given functional expression will
be applied, two tests are necessary:

"* verify whether the actual parameter is more specific than or equal to the formal parameter;

"* verify whether the actual parameter is at all compatible with the formal parameter.

What happens if both of these tests fail? For example, consider the query consisting of the conjunction:

Y = minus(X : int), X = minus(zero)?

Like Prolog, LIFE follows a left-to-right resolution strategy and examines the equation Y = minus(X : int) first.
However, both foregoing tests fail and deciding which rule to use among those defining minus is inconclusive. Indeed,
the sort int of the actual parameter in that call is neither more specific than, nor incompatible with, the sort negint
of the first rule's formal parameter. Therefore, the function call will residuate on the variable X. This means that
the functional evaluation is suspended pending more information on X. The second goal in the query is treated next.
There, it is found that the actual parameter is incompatible with the first two rules and is the same as the last rule's.
This allows reduction and binds X to zero. At this point, X has been instantiated and therefore the residual equation
pending on X can be reexamined. Again, as before, a redex is found for the last rule and yields Y = zero.

The two tests above can in fact be worded in a more general setting. Viewing data structures as constraints,
"more specific" is simply a particular case of constraint entailment. We will say that a constraint disensails another
whenever their conjunction is unsatisfiable; or, equivalently, whenever it entails its negation. In particular, first-order
matching is deciding entailment between constraints consisting of equations over first-order terms. Similarly, deciding
unifiability of first-order terms amounts to deciding "compatibility" in the sense used informally above.

The suspension/resumption mechanism illustrated in our example is repeated each time a residuated actual
parameter becomes more instantiated from the context; i.e., through solving other parts of the query. Therefore, it is
most beneficial fora practical algorithm testing entailment and disentailment to be incremental. This means that, upon
resumption, the test for the instantiated actual parameter builds upon partial results obtained by the previous test. One
outcome of the results presented in this paper is that it is possible to build such a test; namely, an algorithm deciding
simultaneously two problems in an incremental manner-entailment and disentailment. The technique that we have
devised to do that is called relative simplijicaiion of constraints [4, 71.

2

Besides incrementalily. the relative-simplification technique has the advantage of yielding, in case of entailment.
the instantiation of the fonnal paramneter by the actual parameter, as we will explain next.

Every guarded language produces a new environment, namely the conjunction of the old environment, which is
the constraint part of the resolvent (the context), and the guard. This conjunction affects the variables in the body
(viz., in LIFE, the right-hand side expression of a function definition) after successfully executing the corresponding
guard: i.e., it "constrains" them in a semantical sense.

For example, if (in the Herbrand constraint system) Y = f(a) is the context and Y =.f(X) is the guard and Z = X
is the body, then X is constrained to be equal to a. Practically, the matching proof is done by unification which yields
the instantiation of the body variable X, X = a. In order to compute the new environment, this unification is, of
course, not repeated.

The example above can be extended to ()SF constraint systems. Thanks to our method, the proof of entailment
has as a consequence (somewhat like a side-effect) that the conjunction of the context and the guard is in solved form,
as if normalized by the ()SF constraint solver. Now, in this solved form, the formal variables are bound to the global
ones. This is what we mean by the instantiation of the formal parmneter by the actual parameter.

2 OSF Formalism

The syntax and semantics of the formulas that we use as constraints is fixed by an order-sorted feature signature (or
simply OSF signature) which is: (I) a set of sorts S, equipped with partial order < and meet operation A, and (2) a set
of features F. A logical structure fitting such a signature (i.e., interpreting sorts as sets, < as C, A as n, and features
as unary functions) is called an OSF algebra.

An OSF constraint 0 is a conjunction of formuls of one of the forms: (1) X : s, (2) X -- X', or (3) X.1 - X',
where X and X1 are variables from a given set of variables V• s is a sort in S, and I is a feature in '. The interpretation
of $ in an ()SF algebra A under a valuation a : V ý_4 DA, written A, a • 0. is as usual.

The set of OSF terms is generated with the following context-free rules:

I ::= X : s(1, =: 1, ... ,t, 1" t:)

where X is a variable from a set V. s is a sort in S, and 1i E 7, n > 0. The variable X is called the term's root variable,
the sort s its root sort.

Any ()SF term t is equivalently expressible as an OSF clause, denoted 0S(t). called its dissolved form. That is, its
meaning ItiA in the ()SF algebra A can be described as the set of all values a(X) for the root X of t such that 0(t) is
satisfied in A under some valuation a: i.e..

11 = 1(oX) I a : V ý DA, A,

We will often deliberately confuse a O-term 0 with its dissolved form 0(10) and refer to 4(O) simply as 4'.
Syntactically consistent OSF term are said to be in non"al form, and called 4,-terms. They comprise a set called

1. By extension. < and A are extended from the sort signature to the set 91, realizing matching and unification,
respectively.

Unification of OSF terms is done thanks to a normalization procedure. Namely, -01 and 02 are dissolved, and then
the OSF constraint 01 & #2 & Root(0m) - Root(0 2) is normalized (into 1 if and only if 41 and 4'2 are non-unifiable).
The rules to normalize OSF terms are not given here.

We obtain one important example of an OSF algebra directly from the syntactic expressions of 0-terms: the OSF
algebra V of 4'-terms. The domain of V is the set of all 4,-terns, up to graph representation. That is, we identify O-terns
as values of W if they are represented by the same graph. For example, the two ,-terms Y : s(z *:. X : s, 12 --* X)
and Y : s(11 *:ý X, 12 =:, X : s') correspond to the same object.

A sort s C ,S is interpreted as the set of all ,-terms whose root sort is a subsort of s. A feature I E T is interpreted
as a function Ie : DI " D* which, roughly, maps a O-term on its sub-4'-term accessable by the feature 1. For
example. taking 4 = X : T(I(=>. Y : s, 12 * X), we have T (b) = Y :s•. If (4') = b, and e3 (4) = Zl,,, : T.

According to the triple existence of 0-terms being set-denoting types, OSF constraints and, as elements of an
OSF algebra, concrete data structures, we define three orderings on ,-tenns.

A 4'-tenn 4' is subsumed by a 10-tenn 0' if and only if the denotation of 0 is contained in that of 0' in all
interpretations. Fonnally,

3

for all OSF algebras A.
An approximation preorder 1 on 0-terms is defined such that, 4p approximates 02 if and only if 02 is

an endomorphic image of 01. Formally, 1 CA 02 iff -(01) = 102 for some homomorphism - : A '-4 A. (A
homomorphism between OSF algebras is a mapping between their domains which is compatible with the ordering on
sorts and feature application.)

We note that, if we represent 4-terms as graphs, endomorphisms on IF' are graph homomorphisms with the
additional sort-compatibility property. A node labeled with son s is always mapped into a node labeled with s or a
subsoin of s. An edge labeled with a feature is mapped into an edge labeled with the same feature.

Thus, endomorphic approximation captures exactly object-oriented class inheritance. Indeed, if an attribute is
present in a class, then it is also present in a subclass with a sort that is the same or refined. Since features are total
functions, this also takes care of introducing a new attribute in a subclass: it refines T. Note also, that the restriction
of y to the set of nodes defines a variable binding; it corresponds to the notion of a matching substitution for first-order
terms.

A 1b-tenn 0b entails a 0-term 0' if and only if, as constraints, 0 implies the conjunction of 0' and X - X'; more
precisely,

4>-4' iff k -. 3U(X X'& ')

where X, X' are the roots of io and 0' and U = Var(O').
The following proposition states what we call the semantic transparency of orderings.

Proposition I The following are equivalent:

* 090' 0 approximates 0';

* 'P' < !0 j' is a subtype of 0;

0 0' -_ 4 0 entails 0'.

3 Proving OSF Guards

In the following, we use 0 as the context formula. It is assumed to be satisfiable.
The variables in 0 are global. We shall use X to designate the set of global variables Var(O) and the letters X, Y,

Z, ... ,for variables in X. We use 0, a dissolved o-term, as the guard formula. The variables in 0 are local to -0; i.e.,
Var(4) n Var(4') = 0. We shall use U to designate the set of local variables Var(iJ) and the letters U, V, W, ... , for
variables in U. The letter U will always designate the root variable of 0. We also refer to 4) as the actual parameter,
and to 0 as the formal parameter.

We investigate a proof system which decides two problems simultaneously:

"* the validity ofYX (4- 3U. (40 & U -' X));

"* the unsatisfiability of 4 & 0 & U - X.

The fiat test is called a test for entailment of the guard by the context, and the second, a test for disentailment. This
second test is equivalent to testing the validity of the implication VX (0 --. -'U. (,A & U - X)).

Since both tests amount to deciding whether the context implies the guard or its negation, all local variables are
existentially quantified and all global variables are universally quantified.

The relative-simplification system for OSF constraints is presented in (4, 61 in form of II constraint normalization
rules (not given here in this summary).

A set of bindings U, X*, i = I, ... n is afunctional binding if all the variables Ui are mutually distinct.
The effectuality of the relative-simplification system is summed up in the following statement:

Effectuality of Relative-Simplification The solved OSF constraint 4 entails (resp., disentails) the OSF
constraint 3U. (U -- X & 4) if and only if the normal form 0' of 4 & U - X relatively to 4) is a
conjunction of equations making up a finctional binding (resp., is the false constraint V' = 1).

4

4 Conclusion

We have overviewed a complete and correct system for deciding entailment and disentailment of constraints over
order-sorted feature strcutures. One motivation for this system is parameter-passing for functions in LIFE. but it is
general and relevant to all concurrent constraint languages. We used a technique of relative simplification [4. 7] which
amounts to normalizing a constraint In the context of another. This yields an incremental system. Let us mention here
that we can also prove the independence property of negative constraints.

Further work extending this should be to generalize our scheme to so-called deep guards over OSF structures
whereby guards are not limited to plain OSF constraints but may also contain relational atoms defined by clauses.
Ttis Is particularly relevant to LIFE in order to explain matching over objects with attached relational constraints.
TMts study in currently under way and will be reported soon.

References

(1] Hassan Ait-Kaci. An algebraic semantics approach to the effective resolution of type equations. Theoretical
Computer Science, 45:293-351 (1986).

12] Hassan Aft-Kaci and Roger Nasr. LOGIN: A logic programnming language with built-in inheritance. Journal of
Logic Programming. 3:185-215 (1986).

[3] H~assn Ait-Kaci and Roger Nasr. Integrating logic and functional programming. Lisp and Symbolic Computation,
2:51-89 (1989).

[4] Hasan Ait-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRL Research Report 13.
Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malnaison, France (June 1991). (Revised.
November 1992).

151 H.ssan AAt-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research Report 11, Digital
Equipment Corporation. Paris Research Laboratory, Rueil-Malmaison, France (1991). (Revised, October 1992;
to appear in the Journal of Logic Programming).

[6) Hassan AI-Kaci and Andrews Podelski. Entailment and disentailment of order-sorted feature constraints. In
Andrei Voronkov. editor. Proceedings of the Fourth International Conference on Logic Programming and
Automated Reasoning. Springer-Verlag (1993, to appear).

(7] Hassan Ait-Kaci. Andreas Podelski, and Gert Smolka A fea-ture-based constraint system for logic programming
with entailment. In Proceedings of the 5th International Conference on Fifth Generation Computer Systems,
pages 1012-1022, Tokyo, Japan (Jtune 1992). ICOT. (Full paper to appear In Theoretical Computer Science).

[8] Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model. In David H. D. Warren
and Peter Szeredi, editors. Logic Programming, Proceedings of the 7th International Conference, pages 31-46,
Cambridge, MA (1990). MIT Press.

[9] Michael Maher. Logic semantics for a class of committed-choice programs. In Jean-Louis Lassez, editor, Logic
Programming, Proceedings of the Fourth International Conference, pages 858-876, Cambridge, MA (1987).
MIT Press.

(10] Vijay Saraswat and Martin Rinard. Concurrent constraint programming. In Proceedings of the 7th Annual ACM
Symposium on Principles of Programming Languages, pages 232-245. ACM (January 1990).

Separability of Polyhedra and a New
Approach to Spatial Storage

(Extended Abstract)

Alexander Brodsky Catherine Lassez

LB.M. Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Efficient storage and access methods for large amounts of spatial objects are key
issues in Geographic Information Systems (GIS), Computer Aided Design (CAD),
VLSI design and also Linear Constraint Databases (LCDBs) [BJM92], a new appli-
cation domain in which objects are convex multidimensional polyhedra represented
as conjunctions of linear constraints over real variables. Typically, the first step of
query processing is the filtering out of irrelevant information.

We propose a new filtering method which is based on pre-evaluation of projec-
tions of objects (polyhedra) on a number of selected axes. We are concerned with
how to achieve any desired quality of filtering by selecting (a minimum number of)
optimal axes, while keeping storage overhead low.

Filtering in Spatial Queries

Typical spatial queries deal with intersection and containment of objects. For
example, given a particular object (the query object) we may ask what are the
objects in the database that intersect it or contain it or are enclosed in it. We may
also ask what are the pairs of objects that intersect each other. To answer this
type of queries the idea of filtering using minimum bounding boxes (MBB), also
called minimum bounding rectangles, is widely used.

In the case of CIS (two-dimensional case), the MBB of a given object is the
smallest rectangle that encloses the object and whose edges are parallel to the
standard coordinate axes. The MBB's are stored as pairs of intervals along with
the objects in an efficient access structure such as R tree, R+ tree, R* tree, or a
structure based on combination interval, segment and range trees [SiW82, Ed83].

The evaluation of a query consists of a filtering and a refinement steps. In the
filtering step, the access structure is used to retrieve only relevant objects, that

6

is, those objects whose MBB's intersect the MBB of the query object. In the
refinement step, each of the retrieved objects is tested for intersection with the
query object. For instance, in Figure 1, the filtering step in retrieving the objects

that intersect 04 gives 03 and Os. The refinement step eliminates 03 that does
not intersect the query object.

The filtering method based on MBB's is simple and has a number of major
advantages. First, it is economical in storage and access, since only two inter-

vals are stored in addition to each object. Second, because the access structure
manages only pairs of intervals, and not the objects themselves, there is a clear
separation between the complexity of the object geometry and the complexity of
the search (access methods) [Ni90). Third, efficient access methods for rectangles
(pairs of intervals) such as R trees [Gut84, RL84, RL85], R+ trees [SRF87], R"
trees [BKSS90], or based on combination of interval and range trees [Ed83, SiW82J
have been developed. The latter structure, for example, has a worst case time
bound of O(log2n + k) for search, where n is the total number of rectangles and k
is the number of rectangles that intersect the query rectangle (the space require-

ment, however, is O(nlogn)). Whereas no worst case bounds can be guaranteed
by existing spatial access methods that work directly on objects.

The major drawback of filtering with MBB's is that it might be ineffective
when many disjoint objects have intersecting MBB's. For instance, in Figure 2,
whatever the query object, the filtering provides no help as all MBB's intersect.

There are alternative methods to MBB's, based on decomposition of space into
disjoint cells. These include uniform grid method [Fr84], quadtree-based methods

[Ta82, SaW85, NS87, Or89], R+ and R* trees applied to objects, and cell tree
[Gun87]. While these methods reduce the problem of poor filtering, they operate
on a number of cells usually far larger than the number of objects themselves.1

For the multidimensional case in LCDB the use of disjoint decomposition of

space is unfeasible bacause the space might be of dimension of hundreds more. For
the same reason the MBB's method is not applicable as is, but can be generalized

to deal only with a manageable number of axes. Still, the quality of filtering might
be poor.

A New Approach

We propose a new approach to achieve any desired quality of filtering by gener-
alizing the concept of MBB's, while preserving the advantages described above.

We enclose each object in a Minimum Bounding Polybox (MBP), defined as the

minimum polyhedron that encloses the object and whose facets are normal to pre-

selected axes. These axes are not necessarily the standard coordinate ones and

furthermore their number is not determined by the dimension of the space. The

IIn grid and quadtree methods there is a trade off between the resolution of the cells (and

thus quantity of the cells) and the effectiveness of filtering.

7

idea is to select a minimal number of optimal axes that maximize tile quality of
filtering while keeping storage overhead low. For example, for the objects in Fig-
ure 2, only one axis, X', is sufficient to obtain optimal filtering as is shown in
Figure 3, since all MBPs are disjoint. Note that the MBPs here are unbounded.
It is easy to verify that two MBP's are disjoint if and only if their projections on
at least one axis are disjoint.

It is now assumed that the objects considered are convex polyhedra (more
complex objects call be approximated as unions of convex polyhedra). We address
the problem of minimizing the number of axes required to achieve a given quality
of filtering as well as the reverse problem of optimizing the quality of filtering when
the number of axes is given. We say that an axis separates two objects if their
projections on this axis are disjoint. We also say that a set of axes separates a set
of pairs of objects if each pair is separated by at least one axis. In the full paper
we define formally the quality of filtering for a given collection of objects and axes.
For our purpose here, it is sufficient to state that there is a 1 - 1 correspondance
between the quality of filtering and the number of pairs of objects separated by
the axes.

We prove that the following is computable for a given set of objects:

1. The minimum number L of axes needed to separate all N pairs of disjoint
objects.

2. The maximum number of pairs of objects that can be separated using I axes,
for 1 <I < L.

3. A collection of I axes separating the maximum number of pairs as above.

4. The minimum number I of axes needed to separate K pairs of disjoint objects,
for 0 < K < N.

5. A collection of I axes separating any K pairs of objects as above.

In order to prove the above we introduce the concept of separability classification.
Given a collection of objects O1, ... , On, we say that two axes are equivalent if
they each separate the same set of pairs of objects. We define the separability
classification of O1, ... , On as the set

where each Ei is a finite representation of an equivalence class of axes and Si is
a maximal subset of pairs of objects separated by Ei, and I is an index set of
all equivalent classes of axes, excluding the class that separates no pairs and the
empty class. Moreover, the finite representation of Ei is required to satisfy the
property that membership of an axis in Ei is decidable and a representative of Ei
is computable.

I P 8

Note that each equivalence class may contain an infinite number of axes, and
thus the existance of its finite representation with the required properties is not
clear. Also, since the equivalence classes of axes can be represented in many
different ways, we may have many separability classifications for the same set of
objects. It is clear, however, that the separability classification, if it exists, is
unique up to representation of equivalence classes. An instance of a separability
classification is a collection of axes, one from each equivalent class Ei.

Theorem 0.1 A separability classification of objects O, ... , 0,, exists and is
computable.

The proof of this theorem, to be found in the full paper, is constructive and thus
provides an algorithm to actually compute a separability classification. It should
be noted that the concept of separability classification is a general tool for many
potential applications, e.g. within the framework of computational geometry.

LFrom a computational point of view, this algorithm is exponential for two
reasons. First it requires to consider all subsets of pairs of objects. Second, the
test for each subset requires solving an exponential number of linear programs.
Moreover, just computing a representative of an equivalence class also requires an
exponential number of linear programs. Even for the two-dimensional case this
algorithm remains exponential. However, we show that:

Theorem 0.2 Given a set of two-dimensional objects 01, ... , 0,, there exists a

separability classification of at most O(712) pairs (Ei, Si). Furthermore, both testing
instance membership and evaluating an instance of the classification takes O(n 2)
time. Moreover, the separability classification can be computed in polynomial time
in the total number of constraints (or alternatively extreme points) used to represent
01, ... , I0,t.

Acknowledgment:
The authors wish to thank for Jean-Louis Lassez for his help.

References

[BKSS90] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeder, The R*-tree: An efficient
and robust access method for points and rectangles, Proc. ACM SIGMOD Int.
Conf. on Management of Data, pp. 322-331, Atlantic City, May 1990.

[BJM92] A. Brodsky, J. Jaffar, M.J. Maher, Toward Practical Constraint Databases,
IBM Research Report, IBM T.J. Watson Research Center, 1992.

[Ed83] H. Edelsbrunner, A new approach to rectangle intersections, Part I1, Interna-
tional Journal of Computer Mathematics, 13, pp. 221-229, 1983.

9

IFr84] W.R. Franklin, Adaptive grids for geometric operations, Cartographica 21, 2 g
3, pp. 160-167, 1984.

(Gun87] 0. Gunther, Efficient structures for geometric data management, Lecture Notes
in Computer Science 337, Springer Verlag, Berlin, 1988.

IGut84J A. Guttman, R-trees: A dynamic index structure for spatial searching, Proc.
A CM SIGMOD Int. Conf. on Management of Data, Boston, MA, pp. 47-57, 1984.

[Ni90] J. Nievergelt, 7±2 Criteria for Assesing and Comparing Spatial Databases, Symp.
on the Design and Implementation of Large Spatial Databases, pp.89 -1 14, New-
York, Springer-Verlag.

[NS87] R.C. Nelson, H. Samet, A population analysis for hierarchical data structures,
Proc. of the SIGMOD Conf. San Francisco, May 1987, pp. 270-277.

[Or89] J.A. Orenstein, Redundancy in spatial databases, Proc. of the SIGMOD Conf.,
Portland, OR, June 1989, pp. 294-305.

(RL841 N. Roussopoulos, D. Leifker, An introduction to PSQL: A pictorial structured
query language, IEEE Workshop on Visual Language, Hiroshima, Japan, pp. 77-
84, 1984.

[RL85] N. Roussopoulos, D. Leifker, Direct spatial search on pictorial databases using
packed R-trees, Proc. ACM .SIGMOD, pp. 17-31, 1985.

[SaW85] H. Samet, R.E. Webber, Storing a collection of polygons using quadtrees, ACM
Trans. on Graphics 4, 3, pp. 182-222, July 1985.

[SiW82] H.W. Six, D. Wood, Counting and reporting intersections of d-ranges, IEEE
Trans. Computing C-31, pp. 181-187, 1982.

[SRF871 T. Sellis, N. Roussopoulos, C. Faloutsus, The R+-tree: A dynamic index for
multidimensional objects, Proc. 13th Int. Conf. Very Large Data Bases, pp. 507-
518, 1987.

[Ta82] M. Tamminen, Efficient spatial access to a data base, Acta Polytechnica Scan-
dinavica, Mathematics and Computer Science Series No. 34, Helsinki, Finland,
1981.

10

~~ ..-.. Jmernerdaw. A1i

................

A

......

Agumi.

L*IMIYKTVWt FGI uh 'on GUAM 10.4241. Di 1

..-

*1 *

L. 2

LOM a TV0 F6 FO MoWd n OAN103:47- i-g 12

..-

4

-S5-- *6

13g

Constraint Optimization using Preference Logics: A New Role for

Modal Logic

Allen L. Brown, Jr. Surva Mantha Toshiro Wakayama
Webster Research Center

Xerox Corporation

April 4. 1993

Abstract

A family of modal logics of preference is presented. It is argued that modeling preference as
a modal operator captures it at the correct level of granularty and eztrcts the logical core of
the notion of preference. Next. the problem that motivated the development of preference logics
is discussed in some detad. The paper ends with a lit of other areas in which preference logics
have shown promise.

1 Introduction

The purpose of this paper is to outline the development of a logical theory of preference. While
the work was motivated by an extremely concrete problem. the resulting theory turns out to be
surprisingly general and powerful in its scope. applicability and expressive power. In the first half
of this paper. we introduce a family of modal logics of preference followed by a very cursory look at
the historical approaches to preference in the literature of decision theory. philosophical logic and
artificial intelligence. Following that. we describe - perforce briefly - the problem that motivated
this line of research. In ending we list some of the other areas in which preference logics have found
application.

2 Modal Logics of Preference

The research reported in this paper can be viewed as the design of a logical language for stating
symbolic optimization problems succinctly. Informally. any optimization problem consists of a set
S of constraints that dcfinc the solution space. and an objective function 0 that identifies one or
more of the solutions as optimal solutions to S. The task at hand is to device a language - with a
precise model-theoretic semantics - in which (executable) specifications of 0 can be given.

2.1 Logic of Preference and Prohibition P 2

Syntax : We add to the language £ of propositional logic two new monadic modal operators P1
and P,. The rules of formation of 42 include all the rules of Z in addition to

9 If F is a formula then P1F is a formula. and PbF is a formula.

14

Semantics A preference framc M is an ordcrcd pair of the form (W4'. -<) where W is a set
of possible worlds and -5 a binary (preference) relation on thcm. A preference model is
a prcfcrcncc framc along with a valuation function V that dctermincs thc truth of atomic
formulae at individual worlds. Thus.

1 F iff V(F. w) = true.

for all atomic formulae F. Assuming the standard semantics of propositional conncctives. the
semantics of P1 and Pb are given by:

f P F iffVv E W = F implies w :_ v
'' P6 F iffVv E W I=- F implies w 2 v

Roughly. the semantics of PF captures the intuition that F suffices for preference. The
formula F is sufficient to induce a preference ordering between two worlds. F is a preference
criterion at the world w. v is at least as good as w if w _• v. P6. on the other hand. precludes
such a relationship.

Axiomatics : We assume that P is equipped with all the axiom schemes and rules of standard
propositional logic. In addition. we have the following rules.

P1 if F (A AA... A A) - A then l- (P,-A, AA... A P",A.) -- P,-A for n 2> 0

PBI if F (A, A... A A,) - A then F- (Pb-AI A... A Pb'-A,) - Pb-A for n _> 0

We now dcfine two derived operators A,, (admissibility) and Dm (dismissibility).

"* A, F =-df -"Pb F. and

"* Dm F =-df -,P1 F.

Semantically

A',AmF iffH3vE W ý=t F A u; <v.

* D=.DmFiff 3vEW E F A w -A v.

Thus. we have a spectrum of indifferences. ranging from admissibles on the one (weaker) end to
dismissibles on the other end. The logic P 2 is equivalent to a bimodal logic that characterizes com-
plementary bimodal frames. In order to have completeness with respect to the class of standard
preference models, we need to strengthen our axiomatization with what we shall call the Humber-
stone schema [17] (who was among the first to study the complement of the usual world relation).
In our framework. if 1, and 112 stand for strings of any (including zero) length of occurrences of
the weak operators A.. and Din,. then

PH : III(PfcaAPb)"-e -11 2 (a(AO3)

The schema PH is valid in all preference frames. In fact. its prcsence is required to show the
completeness of P2.

Theorem 2.1 The logic of preference P2 (including the schema PH) is sound and complete with
respect to the class of standard preference models.

15

2.2 Logic of Feasible Preference P,

PV too. is a modal logic of two relations that interact with each other. The motivation for this
interaction is to capture the intuition that in order to get to the optimal (or best) world. one
needs to be able to talk about worlds that arc feasible from the standpoint of the current world.
The motivation underlying this whole entcrpr'sc is to devise a formal language and logic in which
optimization problems can be stated precisely. Thus. if U12 is feasible from wl. and ul, "< W2 and
W,2 ;6 wl. then it is possible to move from the solution u, to W2 . If. however. w2 were not feasible
from wt. then it would not be possible to move from w, to u'2 even if 2 were preferred to wo.
This interaction between the two relations is fundamental to modeling any situation that is of
computational interest; in particular. it is crucial to any search based computation.

Syntax : We add to the language cm of a normal modal logic - equipped with the modal operators
0 and 0' - the modal operator introduced above. i.e.. P1 and its associated formation rule.

Semantics : A P, preference frame M is a triple of the form (W. R. :_) where W and R. arc as
in standard Kripkc frames and - is a binary relation over W x W which is a subset of R. A
P, preference model is a P, preference frame with a valuation function V that determines the
truth of atomic formulae at individual worlds. Assuming the usual valuation of formulae at
possible worlds. the semantics of the modal operators arc given by:

* . 13F iff Vv E W w I v - F

* I PfF iffiVv E W P F A Zv - w-- v

Axiomatics : P, is equipped with all the axioms and rules of P and the normal modal logic K.
and has the following axioms.

PPS : I- A ---. P1 A
PIR : fA- ,

T : I-OA-.A

PIR is valid in the class of preference frames with an irreflexive preference relation. T is
valid in the class of preference frames with a reflexive feasibility relation. PIR and T arc
needed to show the completeness of PI.

The language of P1 is rich enough to allow us to express general preference principles. Because
our objective is to characterize the intuitive notion of better, we are interested in syntactically
characterizing irreflcxivity. transitivity and asymmetry. Irreflexivity of the preference relation is
characterized by PIR above. In the ease of transitivity and asymmetry. PTR and PAS below
ensure these properties.

PTR: (P1A A O(PEB A A)) -. P1 B

PAS - O((P 1A A B) A O(A A PjB))

PAS also expresses asymmetry. A formula is said to express a class of frames. if and only if it
is valid in all and only the frames in that class. PTR only ensures transitivity in all supported
preferential models.

Definition 2.1 A preferential model is said to be supported, iff. if for any two worlds w and v if
t, -_ v. then there exists a formula PA such that w, • P1 A and v ý= A.

16

Supported preferential models will bc important in the treatment of preferential theories and their
intended preference models [8]. [21]. There are. however. transitive preference frames where it is
not valid. To characterize transitivity cxactly. the notion of prohibition introduced in P 2 above is
nceded.

3 Granularity of Preference

The notion of preference is fundamental to computing. From combinatorial optimization to the
minimal models of logic programs and circumscriptivc theories, it plays a fundamental role in com-
putcr science. Preference has been used directly and/or indirectly to rcpresent a reasoning agent's
knowledge in a variety of computational contexts in artificial intelligence. The various proposals for
doing nonmonotonic reasoning in logic can be viewed as a form of preferential reasoning, where the
agent bases his/her beliefs on one or more of the preferred models of an underlying logical theory
(which encodcs the agent's partial information about his/hcr environmcnt). and the preferred mod-
cls arc givcn by the agcnt's biascs regarding completing this partial information. Circumscription
in its various flavors [19]. can be viewed as a mcchanism - though somewhat cumbersome - of
programming preference via the more special notion of minimality. Even such syntactic formalisms
as Rciter's default logic [22] and Gabbay and Makinson's cumulativc inference relations [20] have
been given semantics based on preference ordcrings on models. Shoham [231. in his doctoral dis-
scrtation, proposed a general semantic model of nonmonotonic reasoning based on a preference
ordering on the models of a theory. The preference relation in his work was implicit and there was
no syntactic way of manipulating it. It is somcwhat puzzling that though prefercnce has been the
representational and computational mechanism at the core of all nonmonotonic reasoning systems.
very little attention has bcen paid to modeling it directly in the syntax. Researchers have spent
much more time and cffort formalizing other intensional notions such as belief and knowledge (and
with mixed results at best).

Decision theory. economics, ethics and philosophical logic arc other disciplines where the notion
of preference has been studied extensively. But in almost all accounts. [181. [141. [24]. [25]. [131.
1151, preference is taken to be a special binary relation on individual propositions. i.e.. those objects
that can be represented by sentences of the underlying logical language (these propositions are
supposed to characterize states of affairs). The preference statement pPq is intended to mean that
p is preferred to q. Competing - and mutually inconsistent - theories of preference have been
proposed over the decades. Much of the controversy and debate has been around the question:
what are the logical properties of preference Y Is preference asymmetric [1]? Much has been written
for and against transitivity [16], [111. The problem in all these attempts was that the scope of
preference was extremely local i.e., over individual propositions. Having committed to such a fine
level of granularity, one has to make rather strong commitments as to what logical properties the
preference relation enjoys under all circumstances. i.e.. is it asymmetric, transitive and so forth.

The use of preference in nonmonotonicity, of course. lost this local aspect altogether and saw
a drastic shift to the extremely global, with disastrous implications for computational efficiency.
Thus in circumscription, we talk about truth in all minimal models, default logic has the global
notion of an extension (albeit a purely syntactic one) and Gabbay's nonmonotonic inference relation
Aý- B is informally understood as B is true in all the most preferred models of A.

Our own formalization of preference using modal logic was not an accident. In a later section.
we sketch in some detail the problem of specifying style specifications in the layout of a structured
document. Intuitively. the problem came down to one of imposing preference ordcrings among a
set S of collections of propositions. Each collection of propositions Ci describes the properties of a

17

laid out documcnt and the different collcctions in a set S arc different ways of laying out thc same
document. In the case of documents the collections are finitary (documents being finite entities).
but any general theory of preference should be able to handle infinitary objects as well.

An immediate consequence of this is that it becomes difficult to model preference as a binary
relation P (as is commonplace in the decision thcoretic literature) because it is not convenient to
talk explicitly about the referents of this relation. But the notion of a preference criterion arises
naturally. For instance, in laying out a document. one might prefer a layout with fewer number
of pages to one with more pages. If pagenos is a property of a layout. then it is also a preference
criterion. Because what we want to talk about explicitly in our logic are preference criteria, that
make one state of affairs (possibly infinite collection of propositions) preferable to another state
of affairs, modal logic is a natural choice. The modal account also captures another key property
of prefcrcnce. i.e.. locality. Preference is local in nature. This locality exists along, at least, two
dimensions. On the one hand. we speak of prcfcrcnccs'bctwcen objects without being aware of
them in their totality. On the other hand. we often speak of relative preferences between objects
without being consciously aware of a maximum or maximal object. In fact. it is this second aspect
of locality that nonmonotonic logics and circumscriptivc theories have sacrificed. Modal prcferencc
logics also allow us to have preferences about our preferences (see 118] for a lively debate on this).

If the preference operator P! looks very similar to the alethic operator C. that is because it is.
Simply put. it is 0 on the complement of the usual world relation. 03 itself wouldn't have served our
purpose. Kccp in mind that we want to impose orders over possible situations (that arc alternative
to one another) based on very local information about these situations. The weakest normal modal

logic K has the rules A -A This makes it difficult to give an interpretation to 0 and 0. that
"EA -OA '

could correspond to the notion of preference: i.e., an interpretation that would have the truth of
Op at a given world mean that all worlds at which p is true are at least as good as the current
world. The models of any non-trivial (i.e. non-cmpty) system would have a universal preference
relation since the above inference rule would make all the theorems of a theory. preference criteria.
something. clcarly not desirable.

4 The Backdrop: Declarative Document Description

The particular problem that motivatcd this work was that of designing a formal language that
would facilitate precise and unambiguous specification of layout directives and style information
in structured documents. This itself was part of a larger project which involved the design and
development of a formal. mathematical model of document processing. It can be argued that typical
document specification languages (which we shall call ;narkups). together with the programs that
interpret them. constitute computational theories of documents. The problem with such markups
is that the only explicit semantics provided is that of the accompanying interpreters. The document
specification language that we have in mind should have a declarative modcl-theorctic semantics
that should scrvc as the basis of any computational interpretation of programs in that language.

Inspitc of their numerous drawbacks. both SGML (Standard Generalized Markup Language)
[12] and ODA (Office Document Architecture) - ISO standards for document interchange have the
following attractive features.

* There is a clear separation of structure from content. SGML uses the grammatical paradigm
and grammars (with some very rudimentary attribution mechanism) arc used to describe
classes of structured documents, i.e.. one can. in SGML. write different grammar-like entities
to describe the generic structures of books. technical articles, forms and so forth. An instance

18

of a document (belonging to one of the above classes) would be an attributed parse trec
of the corresponding grammar. ODA uses object-oricnted tcrninology and principles to do
essentially the same.

* The notion of a primary logical structure of a document that has no mention of any processing
information (such as layout. for instance). In fact. SGML does not concern itself with any
processing (interchange, layout. recognition to name a few). The ODA standard deals with
the logical as well as the layout structure of documents.

We give below an example of a (generic) logical and (generic) layout structure using regular right
hand part grammars(i.e. context free gammars with re ular expressions on the right hand sides).

Logical Structure Layout Structure
LogicalRoot - Section+ LayoutRoot - Page'
Section - Title Paragraph+ Page - Line+
Paragraph - Word+ Line -lVord+

Thus in ODA. the complete description of a document is given by the following : a generic
logical structure (roughly a grammar). a specific logical structure (roughly a parse tree). a generic
layout structure and a specific layout structure. The correspondence between logical structures
and layout structures is made through special attributes (of the logical structures) that link logical
categories with layout categories. These constitute what is called style specification.

The above outline is indeed very rough. but we hope it sets the stage for the issue that we
shall discuss next. In the spirit of ODA. assume that a document is described by the quadruple D
- (Giogi0 at. Gi,,ot. Coord. tiogicl), where GlogicL and Gi0,,,t specify the generic logical and layout
structures respectively. tiogical is the parse tree. i.e.. marked up content according to GLogcu. and
Coord describes the correspondences between the generic logical and generic layout structures. For
instance. Coord for the above pair of grammars could be given by the following productions

Coordination
LogicalRoot - LayoutRoot
Section - Page+
Paragraph -- Line+

Such coordination grammars relate logical entities with layout entities. More abstractly. co-
ordination can be viewed as a mapping from one class of structured objects (attributed trees) to
another such class. Grammars arc one concrete way of specifying such mappings. Thus. a section
will be laid out in a sequence of pages and a paragraph will be laid out as a sequence of lines.
Given a V. the problem of laying out a document can be formulated as the problem of computing a
t which belongs to the language of Gi,,ot and is coordinated with respect to tjogj,,O according
to the coordination Coord. The notion of coordinated with has a precise mathematical meaning
which shall. however, not concern us in the rest of this paper. In general. any document processing
problem can be formulated in the way given above and we refer the reader to [51 for a detailed
description of the formalism.

SLine Breaking Gib
Paragraph -- Line+
Cost(Paragraph, C) :- bag-of(X, Cost(Line. X), A), Surn(A, C)
"Line -, Word+
Cost(Line, F(Word+)

Lt us now motivate the central concern of this paper, i.e.. preference. Consider the above
grammar for line breaking. The first production is taken from our example coordination and the
second production is taken from our example layout grammar. We have also attached above.
Cost attributes with the nonterminals Paragraph and Line. These attributes are specified by
Horn clause logic programs. F is a function that given the words in a line computes the cost (or

19

badness) of that line. The syntax above is specified somewhat informally, but should get the point
across. (The reader is referred to [5N for details). Those familiar with the Knuth-Plass line-breaking
algorithm (which is at the heart of T)EX) will immediately see the parallels. The grammar Gi6 above.
is thus. the grammaticatical specification of the well-known line-brcaking problem.

The key observation that we now make is that GLb is highly ambiguous. Given a paragraph (i.e..
a sequence of words) there are (exponentially) many ways of breaking it into lines. In other words.
given a string of words s, there arc exponentially many ways (ti. 7r,) (where t, is a tree and wr, is
its associated logic program for its attributes), in which it can be parsed by Gib. The Knuth-Plass
algorithm computes the best line-break by selecting the one with the lowest cost. The monotonicity
of the cost function allows the use of dynamic programming and gives a linear time algorithm.

Consider. however, our grammatical formulation Gib. As it stands. there is nothing in the
specification that states that we prefer the parse tree with the lowest value of Cost. We would
like a declarative statement of our preference for the parse tree with the lowest value of Cost. The
range of this comparison (for a given paragraph p) is over all pairs (ti. i7r) that are admissible line-
breaks for p with respect to the grammar Gib. Identifying the parse trees with their associated logic
programs. we finally end up with the following semi-formal statement of the problem: the design
of a language that will allow the placement of preference orders on collections of propositions (in
our case. the attributes of the parse trees).

Specifications in such a language would correspond very closely to the way actual graphic
designers and layout specialists work. Rather than tell a layout system how to perform the layout.
designers prefer to make declarative assertions regarding what kind of layout they would like. i.e..
I would like a layout with the fewest number of pages. or equivalently stated. Between two layouts
of the same material. I would prefer the one with fewer pages.

5 Applications: Current and Future

Using P, we were able to specify the preference criteria required to imposed preference orders on
the various competing layouts of a structured document. We have extended the attribute grammar
formalism to incorporate ambiguity and preference. giving rise to what we call Preferential Attribute
Grammar Schemes (PAGS). The details can bc found in [5]. Work is in progress on implementing
a WYSIWYG editor with PAGS as the underlying representation for structured documents. We
then set about studying the applicability of the logics to other problem domains. We enumerate
below some of the areas in which preference logics have already shown immense promise.

Deontic Logic Consider the following definitions of the deontic modalities Obligation (0) and
Permission (P) [4] [6].

OD20p =Odp Pfp A Amp

P1 PA -def f 0 "A.

P2 PA -def D,&,A A AreA.

P3 PA =-df A..A.

The definition OD2 steers clear of all the paradoxes of standard dcontic logic [10]. [21. The
three ways of defining permission give rise to different notions of permission. ranging from
the so called free-choice permission to weak permission (as in P3). We arc confident that
preference logics will have significant impact in legal reasoning and the formal specification
of normative systems.

20

Nonmonotonic Reasoning In [8]. we dcfined the notion of a preferential theory and rccast non-
monotonicity as computing thc optimal worlds in the intended model of a prcfcrential theory.
Default and/or uncertain knowledge of the agent are coded as preference criteria. For in-
stance, the simple default birds normally fly is coded as the formula. Bird(X)A-.Flies(X) --
Pf (Bird(X)A Flies(X)). Thus. those models where a given bird flies arc preferred over those
where it does not.

Logic Programming Using the notion of a preferential theory. we were able to give a finitary
characterization of the stable models of a normal logic program [7].

Constraint Relaxation In a series of papers [3], [26]. Borning and his students have introduced
the notion of constraint hierarchies in logic programming. This work was done in the context
of Constraint Logic Progamming. where a partial order (giving the order in which to relax
the constraints if all of them cannot be satisfied) is placed on the constraints on the right
hand side of a clause. Using preference logics. we have generalized this to. what we call.
Relaxable Horn Clauses [9]. In RHC we place partial orders on the bodies of definite clauses.
These partial orders arc interpreted as a specification of relaxation criteria in the proof of the
consequent of a relaxable clause. i.e.. the order in which to relax the conditions of truthhood
of the consequent if all the goals in the body cannot be satisfied. Prefcrence logics enable us
to characterize thcse preference orders. both syntactically and semantically.

We believe that preference logics provide a unifying framework for the use of modal logic in am-
biguous computational contexts. be they in structural descriptions using attribute grammars. non-
monotonic reasoning. or normative specifications of an ethical agent's obligations. Some of the areas
where the use of preference logics to represent domain knowledge would be immensely profitable
are abdurtion. model based diagnostic reasoning and planning. Applications in other areas such as
decision theory. risk management also seem promising. We have already begun investigating these
and other issues that are of a more algorithmic nature. We hope that interaction with other re-
searchers at the workshop will facilitate in bringing out interesting problems and more application
areas.

6 Acknowledgements

We would like to thank Profs. Anil Nerode (Cornell) and Howard Blair (Syracuse) for their en-
couragcment and involvement in various stages of this two ycar investigation.

References

[I1 ACKERMANN, R. Comments on n. rcshccr's semantic foundation for the logic of preference.
In The Logic of Decision and Action. 1967.

[2] AQVIST. L. Dcontic logic. In Handbook of Philosophical Logic. D. Gabbay and F. Guenthncr.
Eds. D. Rcidcl Publishing Company. Dordrecht. 1984, pp. 605-714.

131 BORNING. A.. AND ET. AL., M. M. Constraint hicrarchics and logic programming. In Sixth
International Conference on Logic Programming (June 1989). pp. 149-164.

[41 BROWN JR.. A. L., MANTHA. S., AND WAKAYAMA, T. Preferences as normative knowledge:
Towards dcclarativc obligations. In First International Workshop on Deontic Logic in Corn-

21

puter Science (Amsterdam. The Netherlands. 1991). J. J. C. Meyer and R. J. Wieringa. Eds..
pp. 142-164.

[5] BROWN JR., A. L., MANTHA. S., AND WAKAYAMA. T. Thc declarative semantics of docu-
mcnt processing. In PODP: Principles of Document Processing. First International Workshop
(Washington D.C.. USA. 1992). H. B. Anil Nerode. Allen L. Brown Jr. and R. Furuta. Eds.
Revised version submitted for publication in the journal Computer and Mathematical Model-
ing.

[61 BROWN JR., A. L., MANTHA, S.. AND WAKAYAMA, T. Exploiting the normative aspect of
preference: A deontic logic without actions. Annals of Mathematics and Artificial Intelligence
(1992).

[7] BROWN JR.. A. L., MANTHA. S., AND WAKAYAMA, T. Preference logics and nonmonotonic-
ity in logic programming. In Logic at Tver. International Conference on Logical Foundations
of Computer Science (Tvcr. Russia. 1992). A. Nerodc. Ed.. Springer-Verlag.

[8] BROWN JR.. A. L.. MANTHA. S., AND WAKAYAMA. T. Preference logics: Towards a unified
approach to nonmonotonicity in deductive reasoning. In Second International Symposium on
Artificial Intelligence and Mathematics (Ft. Lauderdale. Florida. 1992). Revised version to
appear in the Annals of Mathematics and Artificial Intelligence.

[9] BROWN JR.. A. L.. MANTHA. S., AND WAKAYAMA, T. A logical reconstruction of con-
straint relaxation hierarchies in logic programming. In ISMIS 93: International Symposium
on Methodologies for Intelligent Systems (1993). Springcr-Verlag.

[101 CHELLAS. B. F. Modal Logic. An Introduction. Cambridge University Press. Cambridge
England. 1980.

[11] FISHBURN. P. Intransitive indifference in preference theory: A survey. Operations Research
18 (1970).

[12] GOLDFARB, C. F. The SGML Handbook. Oxford University Press. Oxford England. 1990.

[13] HALLDEN. S. The logic of better. Lund. 1957.

[14] HANSSON. B. Fundamental axioms for preference relations. Synthese 18 (1968).

[15] HANSSON, S. 0. A new semantical approach to the logic of preference. Erkenntnis 31 (1989).
1-42.

[16] HUGHES, R. I. G. Rationality and intransitive preferences. Analysis 40.3 (1980).

[17] HUMBERSTONE, I. L. Inaccessible worlds. Notre Dame Journal of Formal Logic 24, 3 (1983).
346-352.

[18] JEFFREY, R. C. The Logic of Decision. University of Chicago Press. Chicago. 1983.

[191 LIFSCHITZ, V. Pointwisc circumscription: Preliminary report. In AAAI86 (1986).

[20] MAKINSON, D. General theory of cumulative inference. In Nonmonotonic Reasoning, Sec-
ond International Workshop (New York. 1988). Springer-Verlag. pp. 1-18. Lecture Notes in
Artificial Intelligence.

22

[21] MANTHA. S. First-ordcr prcfcrencc thcories and thcir applications. Tech. rcp.. Dcpt. of
Computcr Science. Univcrsity of Utah. 1992.

[221 REITER. R. A logic for dcfault rcasoning. In Readings in Nonmonotonic Reasoning. M. Gins-
burg. Ed. Morgan Kaufrnann Publishers. Los Altos California 94022. 1987.

[23] SHOHAM, Y. Reasoning about Change: Time and Causation from the Standpoint of Artificial
Intelligence. MIT Press. Cambridge Massachusetts. 1987.

[241 VON WRIGHT, G. H. The Logic of Preference. University of Edinburgh Press. Edinburgh
Scotland. 1963.

[25] VON WRIGHT, G. H. The logic of preference rcconsidcrcd. Theory and Decision (1972). 55-67.

[26] WILSON, M., AND BORNING. A. Extending hierarchical constraint logic programming: Non-
monotonicity and intcr-hicrarchy comparison. In NACLP (Cleveland. Ohio. 1989).

23

Using a Visual Constraint Language
for Data Display Specification*

Isabel F. Cruz
Department of Computer Science

Brown University
Providence, RI 02912-1910

ifc~cs.brown.edu

Abstract

In this paper we introduce the U-term language, a constraint-based language that has a visual syntax,
and allows for the declarative specification of the display of data. Other features of the U-term language
include: (1) simplicity and genericity of the basic constructs; (2) ability to specify a variety of displays (pie
charts, bar charts, etc.); (3) compatibility with the object-oriented framework of the database language
DOODLE.

1 Introduction
In this paper we present a new constraint-based language, the 11-term language. This language provides:

i A declarative and visual specification of the display of graphical objects with simple and generic
constructs.

"* The ability to specify a variety of displays such as pie charts, bar charts, and graphs, using Cartesian
or polar coordinates.

"* Easy integration in an object-oriented framework.

The U-term language is a key component of DOODLE (Draw an Object-Orien ted Database LanguagE) [Cru92,
Cru93a, Cru93b]. The main principle behind DOODLE is that it is possible to display and query the database
with user-defined pictures.

A DOODLE visual program is a set of visual rules, which can be read in any order. Visual rules are
vertically divided by a double bar. We call the entities to the left and to the right of this bar D-terms (for

DOODLE terms). The DOODLE program of Figure 1(i) relates to a software engineering application: the graph
visualization of the components of a program. In Figure l(i) there are two kinds of D-terms:

F-terms. These are terms from F-logic [KLW90]. F-terms are depicted as strings of characters.

U-terms. These are user-defined terms. A U-term is a picture, which is a sentence of the U-term language.

In this program all the terms to the right of the double bar are F-terms, hence the box i -language . On
the left-hand side, the U-terms are used to define the visual language soft Graph (for software graph), as
indicated byI softG[raph I. The program specifies that for the database facts that make the F-terms true,
graphical objects similar to the U-terms on the left-hand side will be drawn on the screen. The U-terms are
formed of two kinds of symbols: (1) prototypical symbols, which specify "by example" the visual attributes
(e.g., shape) of the graphical objects to be displayed on the screen, and the spatial relationships between
these objects. (In the current example, prototypical symbols happen to be depicted using solid lines.) (2)
key symbols (see Figure l(ii)) determine how the prototypical symbols are interpreted.

*Partial support was given by ARPA order 8225, ONR grant N00014-91-J-4052.

24

lsoftGraph f-langua e

S I
' •,-•. 'M:module

a I

< >

-- 1

ý ,P:procedure DPO
I II I

REFBOX <String>

r -- - - - --- - C:calls
~:[caller - X-procediire,

X I called - Y:procedurcLAED
REFBOX I<string> I

GROUPING

r------- ---------- ' T:contains BOX ..

i t- - -- - -I I I I :.

I [outer - X:module,

I~ -- - - - -
- -

r-. 7. 7.7.7.7
R.:agg

rC[members - 'CaIs,

- -'-. - ::T:contains}I

The first rule states that any object N1 in class module is to be displayed by a box. The second rule
states that any object P in class procedure is to be displayed by a diamond. In a similar way, objects C of
class calls are to be displayed by (simple) arrows, while objects T of class contlains are to be displayed by
double arrows.

The U-termn in the third rule specifies the following display: "Draw a solid arrow that starts on the
graphical object that displays database object X and ends on the graphical object that displays database object
"Y." Therefore, refboxes allow for patterns to refer to patterns that were defined elsewhere. For example, in

the objects of class calls, the refboxes make reference to the pattern that specifies the display of objects of
class procedure. This reference is made possible by the use of a defbox in the rule that defines procedure.
The defbox indicates the pattern (or part of the pattern) that can be referred to by another rule. In this

example the defbox that is defined for objects of class procedure includes the prototypical symbol diamond

and a labeled refbox. The roles of defbox and refbox are analogous to the concepts of procedure definition
and of procedure call. The defbox specifies the display. and the refbox "calls" it.

On the fourth visual rule, the refbox that contains Y cal either refer to the defbox in the rule that
specifies the display of procedures or to the defbox that specifies thle display of modules (note that there
is no specification for the display of objects of class block, and that procedure and module are subclasses of
block).

25

Labeled reiboxes are a generalization of refboxes. While (simple) refboxes make a call to a defbox in the
current visual language (softGraph in the example), the labeled refboxes make a call to the visual language
that labels the refbox. In the first two rules of Figure I(i) this visualization is str (for "string"). This
means therefore that M and P are to be displayed using a visualization str that is defined by another visual
program. The last rule of the visual program states that the visual rendition of a set of objects R is the set
of the visual representations of the members of the set (in this case C and T). We use a grouping box to
denote the set of visual representations.

The program of Figure I(i) defines a mapping from database objects to graphical objects on the screen.
We call such mapping a visualization. The semantics of DOODLE is given by an F-logic program: a visual
rule maps to an F-logic rule and U-terms map to F-logic objects. For example, if we assume that the rules
of the DOODLE program of Figure I(i) are the only ones that define the visual language soltGraph, then
we know that (for any database) a graph where some of the nodes are circles is not a picture in softGraph.
Formally, this stems from the fact that there is no corresponding set of F-logic objects that is a minimal
model for the corresponding F-logic program [Cru93a].

This paper is organized as follows. In Section 2 we introduce the graphic principles and the objects and
constraints that are the basis for the U-term language. In Section 3 we present the abstract and concrete
syntax of the U-term language. Finally, in Section 4 we make a comparison with related work, and discuss
topics for future research.

2 Objects and Constraints
We describe graphical objects and the spatial relationships between them using an object-oriented model.
This model is the (textual) basis to the U-term language.

2.1 Visual Objects

Visual objects specify graphical objects. They correspond directly to the kinds of graphical objects that the
layout program can display and are instances of visual classes such as boz, circle, arrov,, and tezt.

2.2 Landmarks and Anchor Points

Landmarks are used to give dimensions to the objects, and to place objects relatively to other objects.
Landmark objects belong to class landmark. There are three subclasses of this class: cariesianLandmark,
polarLandmark, and lineLandmark. Anchor point objects are user-defined landmarks. They belong to the
class anchorpoint.

Cartesian landmarks. The objects of class cartesianLandmark are "mw" (for midwest), "mn" (for mid-
north), "me" (for mideast), "ms" (for midsouth), and "c" (for center). We show their position, as
located on a box and on a circle in Figure 2.

A;- 0.. .. adius

lmW $ m MW C me orii I outadius

InsMI

(i) (ii) (iii)

Figure 2: Cartesian landmarks: (i) on a box; (ii) on a circle. Polar landmarks: (iii) on a sector.

Polar landmarks. The objects of class polarLandmark are "first" (for first angle), "second" (for second
angle), "inradius" (for inner radius), and "outradius" (for outer radius), as shown in Figure 2(iii).

26

Line landmarks. The objects of class ihneLandmark are "h" (for head), "t" (for tail), denoting the end-
points of a line.

2.3 Visual Constraint Objects

Visual constraint objects express spatial relationships between one or more visual objects, and are instances
of isual constraint classes. The constraints are expressed in terms of the objects' landmarks or anchor
points. A visual constraint on a single object allows, for example, for one of the dimensions of the object to
be specified. A visual constraint between two objects expresses a spatial relationship between two objects.
We define two classes: lengthConstraint and overlapConstraint and describe their types with signature F-logic
terms [KLW90].

Length constraint. The F-logic signature of the class lengthConstraint is as follows:

length Constraint [firstObj =* visualObject;
secondObj * visualObject;
firstLand =* {landmark, anchorpoint);
secondLand =* {landmark, anchorpoint);
distance *. realNumberErp;
kind =*, kindTypel

The class length Constraint has attributes firstObject, secondObject, firstLand, secondLand, distance,
and kind. Braces indicate class union. Objects of class realNumberEzp are either constants, variables,
or different kinds of expressions (e.g., max(AX, Y), Height, + Height2 , 2_ 0) of type real. Values of
attribute kind include vertical, horizontal, absolute (Euclidean distance), radial and angular.

The class lengthConstraint is: (1) general, since it considers a variety of distances and kinds of distances,
and (2) generic, because constraints apply to any objects as long as the landmarks are defined for those
objects.

Overlap constraint. Given two visual objects, overlap constraints specify which object is to be drawn on
top of the other object. The class overlapConstraint has the following signature:

overlapConstrainl[firstObj =: visualObject;
secondObj =:, visualObiject:
top =* visualObject]

Top indicates which of the two objects is to be displayed on top. The default value for the attribute
top is the union of the values for the firstObj and for the secondObj attributes (top is a multi-valued
attribute as indicated by =*). This default value works well when the two objects are transparent
(e.g., boundaries of rectangles), otherwise, the overlap constraint is not defined. When two objects are
specified to overlap, there are two special anchor points named "overlap", one on each object, which
will coincide in the resulting picture.

2.4 Examples

Position between two Boxes

Figure 3 shows eight distances that may be defined between the landmarks of two boxes. (Notice that this
is a subset of all the possible distances that could be defined by these landmarks). We label these distances
with "nn", "ns", "sn", se , "ww", "we", "ew, "ee". In order to depict and establish completely the spatial
constraints between two objects not all the above distances are needed. The examples of Figure 4 illustrate
this point. We attach to each picture the distances that are needed to specify the constraints. There will
be three objects of class lengthConstraint to specify (i) and (iv) and four objects of class lengthConstraint
to specify (ii) and (iii). In these examples we consider the first graphical object to be the one with smallest
identity.

27

K A

an fsn i

* S

I IN

, I i

I I

I I

I I

C-J

I

I ee

Figure 3: Constraining the position of two objects.

d d

AA. At 1 5 .d I
h _ _ A .

nn -I VI nn =d IV]

f h IV) sst 0 l(vi ss= -d IV] ss1 h IV]

%wffi0 11) ww-I (H I wwa-d [HI sn=0 [V]

ee = 0 In) cc -I (HI ee = d Il) ee - If)

Wi 00i GOii (v)

Figure 4: Spatial relationships between pairs of objects ("V" denotes vertical and "H" denotes horizontal).

Position between two Sectors

Figure 5 shows four angular distances and four radial distances that constrain the position of two sectors
(these distances are "ff", "fs", "sr, "ss", and "oo". ,", "io", "ii", where "r' denotes first, "s" denotes
second, "i" denotes inner radius and "o" denotes outer radius).

Position of Ancior Points

The following example shows how the position of the anchor point labeled "headpoint" can be specified using
an object o0 of class lengthConstruiat. In the example the vertical position of the anchor point depends on
a landmark in the same object (the object with identity 1).

ot : lengthConstraint[firstObj - I:
secondObj - 1;
first Land - me;

28

00

ff

Figure 5: Spatial relationship between pairs of sectors.

secondLand - "headpoint";
distance - d;
kind - vertical]

Positions on the Screen

Vertical and horizontal positions on the screen can be defined by considering the origin to be a visual object.

02 : lengthiConstraint[firstObj - origin:
secondObj - 1;
firstLand -. origin;
secondLand - overlap:
distance - d;
kind - vertical]

Overlapping of Objects

The following object describes the overlap of two objects with identities 1 and 2. where object 1 is to be
placed on top of object 2. As a result, the two "overlap" anchor points will be made to coincide.

o3 : lcagthConstraint[firstObj -* 1;
secondObj - 2;
top -- 1]

The position of the anchor point "overlap" of the two objects is user-defined. For example, for object 1, it
could have been defined as follows:

04 : IengthConstraint[firstObj - 1;
secondObj - 1;
firstLand - overlap;
secondLand - me;
distance - 0;
kind -* absolute]

The absolute position of the overlap point can be specified (see length constraint object with identity o2).

29

3 Syntax of the U-term Language

3.1 Abstract Syntax

In the U-term language there are four kinds of symbols: prototypical symbols, key symbols, macro symbols
and generic symbols.

Prototypical Symbols

A prototypical symbol consists of:

symbol name. The symbol name uniquely identifies the symbol.

symbol clas. Symbol classes include shapes (like box), lines (like straight line), and text.

attribute pairs (attribute name, attribute value). Classes have attributes, whose values specify further the ob-
jects. For example the boundary of a box can be solid or dashed. boundary is an attribute name and
its attribute values include solid and dashed.

set of landmark pairs (name of landmark, landmark type). Each symbol has a set of landmarks. Landmarks
can be of two types: cartesian and polar. Some symbol classes can have landmarks of the two types.
Such is the case of circle. There is a special landmark called any, which refers to any landmark on the
boundary of the symbol. Its type can be cartesian or polar.

set of anchor point pairs (name of anchor point, anchor point type). This set may be empty. The names of the
anchor points are strings chosen by the user. The type of the anchor points can be cartesian or polar.

In Figure 6 we give some examples of prototypical symbols using the syntax of F-logic.

b : box[boundary - solid, density - opaque, color - black, texture - plain.
landmarks - {[name - mw, type - cartesian], .. ., [name - C, type - cartesian]),
anchorpoints -- {(name - " headpoint", type - cartesian])]

s : sector(boundary - dashed, density - transparent, color - black, texture - plain.
landmarks - { [name - "first", type - polar] ... , [name - "origin", type - polar] ,
anchorpoints - {}]

t : text[value - " Draw", font - roman, size - 12pt)

Figure 6: Examples of abstract UT-terms for prototypical symbols.

Key Symbols

Table I summarizes the syntax of the key symbols in the U-term language. In the table, < any symbol but
defbor > comprises any prototypical symbol, but also any macro symbol or generic symbol that we describe
below.

Figure 7 gives examples of abstract U-terms for key symbols. The following observations complement
the summarized information in Table 1. A more complete description is in [Cru93a].

"* The objects that are values for the attribute contains have to be physically contained in the boxes
that form a defbox or a grouping box. This means that if the object. overlaps but is not within the
boundaries then it is not part of any of those constructs. Note that a defbox cannot contain another
defbox, neither can a grouping box.

"* origin denotes the point of (0,0) coordinates in the active display area (this is the area where the
graphical objects that are specified by the U-term will be displayed).

30

Symbol Class Attributes Names Attribute Value Types
defbox contains {< any symbol but delbox >)
refbox name < string > <string > @
labeled refbox name < string > < string > e

label name < string>
grouping box contains J< any symbol but deibox> }
origin landmark origin
toptight landmark topright

first object < prototypical symbol > I < refbox >
second object < prototypical symbol > I < refbox >

length constraint first landmark < landmark > I < anchorpoint >
second landmark < landmark > I < anchorpoint >
distance + < expression >) I- (< expression > abs < expr.,on>
kind horizontal I vertical I absolute I radial I angular
first object < prototypicol aymbol > I < refbox >

overlap constraint second object < prototypica symbol > I < refoo >
top { < prototypical symbol> I < reiboo->)

Table 1: Key symbols.

d : defbox(contains - b]
I labeledrefbox[name - " X", labelname - "barChart"]
t : lengthconstraint[firstobject - 1, secondobject - 1.

firstlandmark -i ms, secondlandmark - ran.

distance - a Y. kind - vertical]

Figure 7: Examples of abstract U-terms for key symbols.

"* topright denotes the point that has greatest X-coordinate (right) and greatest Y-coordinate (top) in the
active display area. origin and topright along with the length constraints allow for objects to be placed
anywhere in the active display area.

" distance can be positive or negative or the absolute value of an expression (the distance is restricted to
be absolute when the kind of the length constraint is absolute).

"* The kind angular applies only to a pair of polar landmarks or anchor points.

"* The kind radial applies to a pair of landmarks or anchor points such that at least one of them is polar.
The fact that one of them can be cartesian gives much flexibility to the positioning of polar objects
(e.g., sectors). For example, their polar origin can be placed in the cartesian plane. Also text (which
has cartesian coordinates) can be placed in a pie chart when related to a polar coordinate.

" The proportionality expression a, allows, for example, to specify that that the height of a bar in a
bar chart is proportional to Y, where Y can denote for instance the value of the database attribute
"Salary". The syntax of the proportionality expression is as follows:

< proportionalilyExpression >:: a <simpleErpresszon > [min :< num >][max :< num >]

(sum :< "uM >1

The value for "max" ("min") is the greatest (smallest) value in the active domain of the specified
attribute. "max" and "min" make it easier for the layout program to figure out how to display a range
of values within a given screen space. The value of "sum" is the sum of all the values of an attribute.
"sum" can be used, for instance, to display pie charts, where it is necessary to know the sum of all the
values being represented, so that the sum of the angular widths of each sector (the angular width of
each one being proportional to each value) will be made equal to 27r. need not be defined).

31

Macro Symbols

There are spatial relationships between objects that result from combining two or more length constraint
objects. They are not therefore indispensable, but their existence can simplify the user's task of assembling
a picture. Next, we present in some detail the macro symbols: contains and grid alignment. Other macro
symbols include: Cartesian position (to specify the placement of a graphical object on the plane), and zero
distance (to specify that the absolute distance between two landmarks is zero).

Contains

The contains relationship is a macro for four length constraint objects, as outlined in Figure 8. Figure 9,

Snn

Figure 8: Contains relationship.

where we also give the four length constraint objects it is equivalent to.

C : contains[firstobject - 01, secondObject - 02,
nn -> 0, ss - 0, ee -> 0, ww -< 0O

{Z1 : lengthconstraint[firstobject - 01, secondobject - 02,
firstlandmark - mn, secondlandmark - mnn,
distance -> 0, kind - vertical).

Z2 lengthconstraint[firstobject - 02, secondobject - 01,
firstlandmark - ms, secondlandmark -i ms.
distance -> 0, kind - vertical],

Z3 lengthconstraint[firstobject - O1. secondobject - 02,
firstlandmark - me. secondlandmark - me.
distance -> 0, kind - horizontal),

Z l :engthconstraint[firstobject - 02, secondobject - 01,
firstlandmark - mw, secondlandmark - mw.
distance -> 0, kind - horizontal])

Figure 9: Example for contains and equivalent length constraint terms.

Grid alignment

The principle behind grid alignment is the following: if two landmarks or two anchor points or a
landmark and one anchor point are on the same horizontal (vertical) line then they have the same horizontal
(vertical) coordinates. Figure 10 shows a specification of a bar chart and of two nodes of a linked list. The
syntax of this macro symbol is GRID ON. When the alignment is not enforced it corresponds to GRID OFF. In
Figure 10 we have emphasized the landmarks for which the vertical or horizontal positions will be enforced.

Generic symbols

Generic symbols are predefined symbols to the layout program. For example, a set of orthogonal axes (as in
Figure 11(i)). The parameters for these axes, are the names of two domains, the maximum and minimum
values in each of the domains, the space along each axis between each consecutive pair of "labeled ticks" The

32

. . .i i

• °,

S..• ,

Figure 10: The grid alignment option.

Name- NameSy
hMax.Y-.MxY

1'...n... M;`rn•• ; ; * • •.Y - - - -;-

Min.X Max.X Name.X MinX p Max.A Nam.e.X

Figure 11: (i) X-Y Axes; (ii) X-Y Grid.

grid generic symbol is similar to axes, but there the "ticks" are replaced by sets of horizontal and vertical
lines (see Figure 11(ui)).

3.2 Concrete Syntax

Figure 12 exemplifies (part of) the concrete syntax of the U-term language. In the example, the two solid

boxes intersect, the grouping box. This is not a syntactic error. The boxes are not inside the grouping box,
so the latter is actually empty. It is also valid to have a circle inside a refbox. Because there are no s ntactic

errors, this picture is a well-formed U-term.
The syntactic description of the picture is given in Figure 13. It. takes into account the exact position

of the graphical objects, as indicated in Figure 12. Tei abstract syntax is given in Figure 14.
There may be more than one well-formed U-term that is mapped to the same abstract U-term. We

can therefore partition the unconstrained U-terms into equivalence classes. We say that two U-terms are
specification equivalent iff they are described by the same (up to macro symbol equivalence) abstract syntax.
Note that this equivalence is stricter than needed, since there may be U-terms that specify the same display,
but are not specification equivalent.

4 Conclusions

We have presented a new constraint-based visual language, the U-term language, to specify the display of
data. This language is declarative and visual.

Other languages which are also constraint-based, such as IDEAL [Wyk821, [Kam89], and [Gol9i], are
textual. Of these, only IDEAL addresses the display of sectors like the ones that are used in pie charts
(called wedges). In w'ay,., our work is closer to (and also drew from) ThingLab [Bor8l], in that the user can
define visual classes by ex ample, and the language is constra int- based and object-oriented. In ThingLab,
constraints are associated with classes. A constraint, in a class includes a predicate, which needs to be true
for the objects of that. class. r.d methods, which provide alternate ways of satisfying the constraint. In this

33

. ;.......

..........'

. :..................

..
... -- '-- ".-.o.......o..

S...

................

..._ .->

.....
GRID ON

box:x - 2, by - 5, rx - 7, ty - 9, boundary - solid)
box'x - 3, by - 6, rx - 6, ty - 8, boundary - solid]
groupingbox[lx - 5.5, by - 7.5, rx - 11.5, tv - 11.5]
refbox[Ix - 8, by - 4, rx - 31.5, ty - 6, name -"V

circle[cx - 10.5, cy - 5, r - 0.5, boundary - solid]
defboxllx - 3, by - 0, rx - 7j, ty - 4]
diamondflx - 4, b~y - 1, rx - 6, ty - 3, boundary - solid)
cartesianposit ioncx - 4, cy - 5, label - ". 55"

anchorpoint~fcx - 8. CY - 5, name - ""
anchorpoint[cx - 7. cy - 2. name - "DIAMOND")
zerolengthx x - 6, by - 2, rx - 2, ty - 7]
arrowix - 7, by -62. rx - 8, ty - 5, boundary - solid]
gridon

Figure 13: Description of a U-termi.

paper we are concerned with the predicate (visual) specification. but we are not addressing the satisfaction
of constraints. Future work will focus on tle following topics:

Language design. Evaluation of the U-term language in the specification of a variety of 2D displays. In

addition, we would like to test the robustness of the key symbols with different sets of primitive symbols
(e.g., for 3D display).

Constraint query languages. Constraint query languages such as [KKR9O] have a textual syntax. The
U-term language could provide a visual syntax for such languages.

Graph drawing. Identification of the kinds of graph layouts [DET93y that can be specified by the U-
term language and by DOODLE; characterization of the graph properties (e.g., planarity) that can be

expressed.

Design of the iFterface. Figures 1(i) and 12 show different levels of detail in the presentation of the U-
terms. The design of Ith e interface so that te user can choose different presentations of the U-terms is

an interesting topic.

34

a bot~boundary - solid]
b: box~boundary -. solid',
c : roupingbox~contains-)
d: refbox~n ame - "X'"]
e circle(boundary - solid]
f defbox[contains - (g))
g: diamond~boundary - solid)
I: afrow(boundary - solid]
n :cartesianposition[firstObject -a, landmark m is, x-position - 5, y..position -5

o lengthconstraint~firstObject - g, secondObject - 1, firstLandmark - me, secondLandmark - t
distance - 0, kind - absolute]

p: Iengthconstraint[firstObject -. d, secondlObject -. 1, landmark - "T", landmark - h,
distance - 0, kind - absolute]

r - lengthconstraint~firstObject -. b, secondlObject - g, firstLandmark - me,
secondLandmark - me, distance - 0, kind - horizontal]

s: lengthconst raint[fi rstObject - a, secondlObject - e, firstLandmark - ins,
secondLandmark - T", distance - 0. kind - vertical)

u :contains[firstObject - a. secondlObject - b,
nn -> 0, ss -< 0, ww -> 0, ee -< 0]

v :contains[firstObject - d, secondlObject - e
nn-> 0,ss -<0, ww ->0, ee -< 01

Figure 14: Abstract U-term.

Expressive power of DOODLE as a pictuire generator. The example of Figure 1(i) is relatively simple:
for instance we have no recursion in the rules. WVith recursion it seems that DOODLE would have at
least the same expressive power to generate pictures as visual multiset. grammars (Gol9l]. The precise
comparison of the expressive power of both approaches is another subject for future research.

Acknowledgements Thanks to Theo Norvell for fruitful discussions that led to the definition of the
visual constraint object, and to the refinement of the abstract syntax.

References
[Bor8l] Alan Borniing. The Programming Language Aspects of ThingLab, a Const raint -Oriented Simulation Lab-

oratory. ACM1 Transactions on Programming Languages and Systems, 3(4):353-387, October 1981.
[Cru92] Isabel F. Cruz. DOODLE: A Visual Language for Object-Oriented Databases. In ACAJ.SIGMOD Intl.

Conf. on Management of Data, pages 71-80, 1992.

[Cru93a] Isabel F. Cruz. Querying Object-Oriented Databases with User-Defined VisualiZations. PhD thesis, Depart-
ment of Computer Science, University of Toronto. 1993. To appear.

[Cru93b) Isabel F. Cruz. User-defined Visual Languages for Querying Data. Manuscript, April 1993. Dept. of
Computer Science, Brown University.

[DET93] Giuseppe Di Battista, Peter Eades, and Roberto Tamassia. Algorithms for Drawing Graphs: an Annotated
Bibliography. Technical report, Department of Computer Science, Brown University, March 1993.

[Gol9l] Eric J. Golin. A Method for the Specification and Parsing of Visual Languages. Technical Report CS-9019,
Brown University, May 1991.

[Kam89] Tomihisa Hainada. Visualizing Abstract Objects and Relations - A Constraint- Based Approach. World
Scientific, Singapore, 1989.

[KKR9O] Paris C. 1(anellakis, Gabriel M. Kuper, and Peter Z. Revesz. Contraint Query Languages. In ACM
Symnposiuma on Principles of Database Systems, pages 299-313, 1990.

[KLW9O] Michael Kifer, Georg Lausen. and James Wu. Logic Foundations of Object-Oriented and Frame-Based
Languages. Technical Report 90/14 (2-nd revision), Department of Computer Science, SUNY Stony Brook,
1990.

fWyk821 Christopher .1. \"an \Xyk. A Hligh-Level Language for Specifying Pictures. ACMI Transactions on Graphics,
1(2):163-182. April 1982.

35

Constraint Management in a Declarative Design Method for
3D Scene Sketch Modeling

St~phane Donikian G~rard HWgron
IRISA Ecole des Mines de Nantes

Campus de Beaulieu 3 rue Marcel Sembat
35042 Rennes Cedex, FRANCE 44049 Nantes cedex 04, FRANCE

donikian@irisa.fr hegroti©emn.fr

Abstract
In this paper, we present a dynamic model associated with an intelligent CAD system aiming at

the modeling of an architectural scene sketch. Our design methodology has been developed to simulate
the process of a user who tries to give a description of a scene from a set of mental images. The scene
creation is based on a script which describes the environment from the point of view of an observer who
waoves across the scene. The system is based on a declarative method viewed as a stepwise refinement
process. For the scene representation, a qualitative model is used to describe the objects in terms of
attnbu e. functions, methods and components. The links between objects and their components are
expresed by a hierarchical structure, and a description of spatial configurations is given by using locative
relations. The set of solutions consistent with the description is usually infinite. So, either one scene
consistent with this description is calculated and visualized, or reasons of inconsistency are notified to
the user. The resolution process consists of two steps: firstly a logical inference checks the consistency
of the topological description, and secondly an optimization algorithm deals with the global description
and provides a solution. Two examples illustrate our design methodology and the calculation of a scene
model.

1 Introduction

In the current literature, several approaches have been attempted to design CAD systems. A first approach
consists of an extension of classical CAD systems with the help of parametric objects or variational geometry
[1], but models required by those systems are still very close to the traditional geometrical models and imply
a bottom up design methodology by using imperative methods. Furthermore, this approach is not suitable
when the design scene is complex or when the designer thinks about his project in a more semantical way.
A second approach consists in building expert systems; these systems tend to focus on a particular domain
and are only useful for routine design in a well known application domain completely formalized by a set of
rules and constraints [2, 3]. Both approaches are far from architect's considerations during the first stage
of design which is more a top down approach and a stepwise refinement process. A third approach met a
constantly increasing interest in all CAD domains [4, 5, 6, 7, 8, 9]. This approach is more declarative and
offers to the designer a more progressive and dynamic scene specification, leaving to the system the care
of suggesting solutions, detecting inconsistencies and manipulating incomplete knowledge. An important
difference between declarative and imperative methods (figure 1) is that a declarative method does not
provide a unique solution like an imperative method does, but provides a model corresponding to a large
number of scenes for which the system proposes one or more solutions.

Our system is based on the third approach and offers to the designer the ability to describe the topology
and geometry of the scene in a declarative way by means of properties and constraints on objects and their
spatial configuration. This system deals with under-constrained and over-constrained scene descriptions and
proposes to the designer one of the numerous scenes whenever the description is consistent, or explicits the
inconsistency reasons. The goal of this paper is to put an emphasis on the different sorts of properties and
constraints our system can manage, how they are performed and how a particular solution is calcuted from
the global description. Other parts are not detailed but are referred to previous papers. The next section

36

Declarative Methods

o o~omputer

user

Imperative Methods

Figure 1: Declarative and imperative methods

gives an overview of our system structure. Section three deals with the two steps involved in the resolution
process and section four gives some details about the different kinds of inconsistencies which may occur
during the design process. Finally some implementation details and illustrations of our rn" hod are given.

2 System Overview

We intend to apply the declarative methodology to architectural design. Our goal is not to get the final
and precise geometric model of each component of the scene but to assist the designer in creating sketches
meeting the main properties and constraints of mental images. The architectural project design we will try
to simulate is based on a script which describes the scene from the point of view of a user who moves across
the scene [10]. From each viewpoint, the user increases the scene description by adding new objects and new
properties and constraints about objects and their spatial configurations, and a current model of the scene is
then proposed by the system. For architectural design, the complexity comes from the spatial configuration
of objects and from the large amount of data. This observation explains why we are not interested in defining
complex geometrical objects but in providing a high level description of object characteristics and spatial
configurations.

Our model is composed of a 3-tuple <O, S, L>, where 0 is the set of scene objects, S the scene
hierarchical structure and L the set of locative relations and constraints between objects. A dynamic and
interactive user interface is used to offer a high level interaction to the designer, and the dialogue is carried out
with the help of an object oriented language (figure 2). The verification of the scene description consistency
and the proposition of a scene (solution of the description) are made during the resolution process.

Each class of objects is a member of an architectural abstraction level (urban, building, architectural
space, architectural element, architectural components, architectural constructors). The hierarchical struc-
ture of the scene is represented by a directed acyclic graph whose nodes are objects and whose arcs link
an object to another one as a part of or as a copy of. Each object refers to a particular class, and a class
is composed of attributes, functions, methods and a prototype. Attributes denote characteristics of the
object which can be represented by a variable of atomical or numerical type. A function defines the object
characteristics represented by an analytical inequation which is composed by:

"* usual arithmetic operators +, -, *,/,

"* parenthesis (,),

"* real constants,

"* basic geometrical constraints like volume, surface area, segment length,

"* numerical attributes of the object and its components,

"* functions of the object and of its components.

37

Figure 2: The system architecture

A geometrical constraint will be represented by a function of the object from which all parameters belong

to a part of itself. Methods correspond to qualifying adjectives, allow to refine the description of an object,
and are described by a sequence of predicates. Some attributes are predefined for every class of objects and
represent characteristics useful for locative relation management and for the scene visualization. Each object

is defined in its own reference system of axes and is included in its bounding box with edges parallel to the
axes. Dimensions of the bounding box are either fixed, or included in a possible value domain, or unknown,
and its position depends on locative relations and geometrical constraints.

A locative expression involves a locative prepositional phrase together with whatever the phrase modifies
[11]. Each locative expression is given in accordance with the current locator's viewpoint. In our system,
a locative expression is composed of a locative syntagma, a verb (to be) and two noun phrases: c is
locative syntagma Nsine. The subject (Nrarset) refers to the located entity and the object (Nwhcal to the
reference entity. Each locative syntagma possesses its own semantic defined in the relation reference system.
The orientation of this reference system depends on the site orientation and for each locative expression, the
site can have three kinds of orientation [12] (intrinsic, deictic and contextual orientations). The description
is given for a succession of locator's viewpoints, and for each of them the locator participates to the scene

description.
Locative relations are given on object bounding boxes, and the locative syntagma semantic [13] is

expressed by one constraint along each axis of the relation reference system between edges corresponding to
the projection of object bounding boxes (figure 3). Each constraint C(X, Y) corresponds to a disjunction of
some Allen's elementary relations [14], which allows to describe the relative positionning of the two segments
X and Y along an axis:

C(X, Y) = (Ve-i ea .rc(X, Y)) witha, E s0, 1sesaid rowone of the thirteen Allen's relations (figure 3)

Other locative relations are given on object's sides. Each side is represented along the axis parallel to
its normal by a projection point of the side on the axis. The relative positionning of two parallel sides is
expressed by a constraint on corresponding points (figuer 4). A constraint c(, y) between two points z and
y along an axis is expressed by:

c(x, y) = (V?=ai.ri(x, y)) with ei E {0, 1} and ri E {precede, identical-to, follou}

38

Symbol for
Relation Symbol inverse Illustration

" before y < > X 1L.
-I-- y

"X equal y -
A'

Xy

xmeets y mm X , y

x overlaps y 0 oi - " '" •

x duringy d di ,

YX

x starts y s si r
.

x finishes y f fi

Figure 3: The thirteen relations between two intervals and the bounding box projection along the three axes

Relation Symbol Illustration

x y
x precede y precede * S

x

x identical to y identicaLto
ye

3 X
x follow y follow •

Figure 4: The three possible relations between two points

To have a unique representation for this two kinds of constraints, each segment X is represented by its
two extremities Xb and X, which correspond to the beginning and end points of the segment. Each Allen's
relation ri(X, Y) between the two segments X and Y is then expressed in the following form:

ri(X, Y) = precede(Xb, Xe) A precede(Yb, Y,) A ri,(Xb, Yb)A

r,(Xb, Ye) A ri,(Xe, Y,) A r,.(X,, Ye)

with ri, E {precede, identical-to, follow).

A description being a conjonction of constraints, each Allen's constraint must be expressed in the fol-
lowing disjunctive normal form to make the union of all constraints on the same segments or extremities:

C(X, Y) = [(A!4 I (V3=-i rk 'r(Xu,, Y~,))) A precede(Xb, X,) A precede(Yb, Ye)]
where ak, E {0, 1), (ýUj, vi)-E {(b, b), (b, e), (e, b), (e, e)), rk E {precede, follow, identical-to)

Among all Allen's constraints there are only 187 wich are expressible in this form [151. Constraints
expressible in a disjunctive normal form correspond to constraints which present a continuity in their
geometrical configuration area. For example the locative relation The chair is on the left or on the
right of the table is not expressible in a disjunctive normal form on the lateral axis. On the other

39

hand, the locative relation The box X is on the table Y corresponds to C.,,ti,.I(-, Y) = {m.} and
Cfronta(X, Y) = Clatrai(X, Y) = {o V oi V d V di V s V si V f V fi V =) is expressible in the
following normal form:

"* Cit.1t(X, Y) = [(Xb precede Xe)A(Yb precede Y.)A(Xb precede Ye)A(Yb precede Xe)A(Xb {precedev
follow V identical to) Yb) A (Xe f precede V follow V identical to) Ye)]

"* Clatera(X, Y) = [(Xb precede X,) A (Yb precede Y,) A(Xb precede Y,) A (Yb precede X,) A (X6 Jprecede V
follow V identical to} Yb) A (X, f precede V follow V identical to) Ye)]

"* C,.,etcai(X, Y) = [(XbprecedeX,) A (Yb precede Y,) A (Xb identical toY,) A (Yb precede X,) A
(Xb follow Yb) A (Xe, follow Y,)]

3 The Calculation of a Scene Description Solution

At any stage of the design process, a solution s, among the infinite set of valid solutions S, can be calculated
and visualized. The solution calculation is achieved in two steps: the first step allows to check the consistency
of the locative description and to obtain a minimal system of linear inequations; the second step adds to
the previous system the set of geometrical constraints (object functions) and proposes one solution of the
global description by minimizing an objective function subject, to the global system of linear and nonlinear
inequalities.

From the set of locative relations, a directed valuated graph is constructed for each axis[16], whose nodes
are edge extremities of the bounding box. Graph arcs represent the relative positionning of points by using
only {precede} and {precede V identical-to) relations.

ri((Xk, Y1) corresponding arc

{precede} Xk - 1,
{identical-to} XL e._qq 1Y1

Y e~q Xk

4precede V identical-to Xk leq I

{followu V identical-to Y, leqXk
4precede V follow) no arc creation

4precede V follow V identical-to} no arc creation

Figure 5: Correspondance between constraints and graph arcs

There is no creation of an arc connecting two nodes when the disjunctive relation is 4precede V
identical-to V follow) or {precede V follow), because the relative positionning of these two nodes is consid-
ered as being free. This description is logically consistent if there is at least one solution to order extremities
of segments. For example, the set of constraints (Y d X), (X m Z), (Y o Z) is logically inconsistent, because

points X,, Y, and Zb cannot be ordered (X, *-+ Zb e Y" - X,). The consistency of the description is
checked (in a unique graph traversal) by searching for a circuit.

Each arc is also valuated by the information of its length, which is given by bounding box dimensions
or by distance constraints between the object sides. Each distance between two nodes is either fixed, or
included in a possible value domain, or unknown

* --d-+ : for a fixed distance d,

* 1 : for a distance in a possible value domain [a,b],

40

n* : for an unknown distance.

For each arc from Xk to Y1 whose length is unknown, if there is a path between its two nodes of length
higher than one, then the arc is removed by applying antitransitivity rule After this reduction process, some
of the arc lengths are still unknown, and it would be interesting to reduce their possible value domain by
propagation of known values, but the global propagation algorithms have a Non-deterministic Polynomial
complexity. On the other hand, we can apply local propagation algorithms, according to the local graph
structure, with a weak cost.

If no inconsistency has been detected at the preceding step, then a minimal system of linear inequations
is obtained from the three graphs. Each arc from Xk to Y) with les or leq valuation is corresponding to one
of the three following expressions:

I. (Xk ' YO) *(V(Y) - V(Xk)) = d

2. (X [ab] Y) *a < (V(Y 1) - V(Xk)) < b

3. (X, n Y,) = 0 < (V(1•) - V(Xk)) <_ L (L is the domain length along the corresponding axis)

Each graph node Xk is performed by an expression (by using the function V) corresponding to the sum
of a variable and a constant as follows:
V Xk,

* VYj E pred(Xt), (01 [a,b] v.nil Xk) ' V(Xk) = new variable(ri)

* 3 Y" E pred(Xk), (Yl L Xk) = V(Xk) = V(Y1) + d

The function pred(X) defines the set of the direct predecessors of the node X. This allows to reduce the
number of variables and inequalities, and also to detect some numerical inconsistencies as for the following
system:

30 < V(j) - V(k) < 50
V(j) = V(i) + 40 30 < 20 < 50
V(k) = V(i) + 20

Our goal is not to detect all inconsistencies of the linear system but only those which can be easily
identified during the system construction. Some geometrical constraints are linear, like relations between
segment lengths, and are added to the previous linear system; the others form a vector of nonlinear in-
equations. This system can be well-constrained, but it is generally under or over-constrained: thus it is
not possible to enumerate all solutions of the description. The translation of the problem into a system of
linear and nonlinear inequalities allows us to solve geometrical and locative constraints simultaneously and
to propose one solution among the infinity of possible solutions (when the description is consistent). This
system is described by the following equations:

1. Vi E {1, ... ,n}, li < xi :<ui,

2 . Vi E + l,... ,p), 1i <5=,, a.-Xi < uj,

3. Vr E {p + q,...),q}, 1 <5 C(Z, ... , X,) < u,.

The system is solved by using a resolution algorithm which minimizes a quadratic objective function F
as follow:

minimize F(x) (x E Rn) subject to : 1 <{ ALx < u
41)

41

where z = (xI, ... z,,), AL is an (p - n) by n constant matrix, and C(z) is an (q - p) element vector of
nonlinear constraint functions. A numerical solution of the problem is computed by using a NAG' library
routine, essentially similar to the subroutine SOL/NPSOL described in Gill et al [171. The objective function
F to be minimized is given by the following equation:

F(xl, ... , .) = E ,=•,•. _'•2 - Zl-))2, ,l { .. ,,,
= ,6 - (zk - zg-)(-kk,lE 11, .

where fi = I if the (i-n) linear equation is in the form li _< zk - rl _< us, and if (l 0 ui,) else i3 = 0. This
function allows to keep the equilibrium of the object's space distribution.

4 Consistency of the Description

At every moment of the design process, an inconsistency can be generated by the description. Firstly we have
topological inconsistencies due to an incompatibility between some locative relations. Secondly we may have
some geometric inconsistencies: for instance when different values are given for the depth and width of an
objet while one says this object is cubic. A part of this second kind of inconsistency can be detected during
the construction of the global system and will be also easily expressed to the user. Other inconsistencies are
detected during the numeric resolution process.

5 System Implementation and Results

A first version of this system has been carried out[10]. The object-oriented-language and knowledge repre-
sentation model have been written in Quintus-Prolog and C++. The user interface is composed of a graphic
zone written in Phigs included in a Motif window manager environment. The routine of the NAG library,
which performs the numerical resolution, is directly called by prolog. We use a global illumination rendering
algorithm [18] to obtain realistic images of the scene. The following examples illustrate our method.

A first pedagogic example shows the management of objects whose some dimensions are unknown, and
on which the user gives some constraints. The scene is composed of a carpet, a table, two chairs and the
following description:

"* The carpet is two centimeters high, five meters wide and three meters deep.

"* The table is seventy centimeters high and its width and depth are unfixed.

"* Both chairs are one meter high and their width and depth are unfired.

"* The carpet is in front of the locator.

"* The table and the two chairs are on the carpet.

"* Both chairs are respectively on the left and on the right of the table.

Figure 6: Initial solution of the first example

The scene solution calculated by our system is shown on the figure 6. Adding a constraint defining that
the table depth is twice more important than the width of both chairs modifies the scene only on the locator

42

Figure 7: The table depth is twice more important than width of both chairs

frontal axis (figure 7) because chairs are intrinsically oriented.
Figure 8 is obtained after adding a constraint defining that a quarter of the carpet area is occupied by

both chairs and the table.

Figure 8: A quarter of the carpet area is occupied by both chairs and thf tabik

The scene illustrated by figure 9 has been produced after the definition of the table width (two meters
and eighty centimeters). In this scene, the area occupied by the chairs has decreased proportionnaly to the
increase of the table area, maintaining the length relation on the locator frontal axis.

-- -- ------

Figure 9: The table width is equal to two meters and eighty centimeters

This example has shown that locative relations and geometrical constraints are jointly taken into ac-
count in our system, which allows us to constantly offer to the designer a solution of the global description
as long as the scene description is consistent.

Through an easy description of a building, the second example illustrates that our system is useful even
for more complex scenes. This building (figure 10) is composed of a ground floor, four identical storeys and
a roof. On the front side of the building, each storey is composed of five identical rooms: there are two
identical apertures in the front wall of rooms, in which a window is embedded. The ground floor is composed
of four identical pillars, a winding stair and two rooms.

I NAG is a registered trademark of: the Numerical Algorithms Group Limited and The Nunerica] Algoritms Group

Incorporated.

43

Figure 10: A building example

Conclusion

This paper has presented in detail the management of constraints and properties in our declarative design
methodology which provides the ability to manipulate uncertainty for both numerical and locative con-
straints. The description of objects at a level higher than the geometrical one and the use of prototypes
permit to reduce the decomposition/recomposition step. Examples illustrate the capability of our system to
jointly deal with a topological and geometrical knowledge. One of its main characteristics is the cooperation
between two inference techniques which are most of the time competing: on the one hand a logical infer-
ence stemming from Allen's temporal logic and instant logic, on the other hand a numerical inference based
on an optimization under constraints algorithm. We are currently extending this model to more complex
geometrical objects, and are investigating other design domains involving new kinds of constraints.

References
[1] R. Light and D. Gossard. Modification of geometric models through variational geometry. Computer

Aided Design, 14(4):209-214, July 1982.

[2] U. Flemming, R.F. Coyne, T. Glavin, H. Hsi, and M. Rychener. A Generative Expert System for
the Design of Building Layouts(Final Report). Technical Report EDRC 48-15-89, Carnegy Mellon
University, 1989.

[3] P. Quintrand, J. Zoller, R. de Filippo, and S. Faure. A model for the representation of urban knowledge.
planning and design, 18(1):71-83, 1991.

[4! P.J.W. ten Hagen and T. Tomiyama (Eds.). Intelligent CAD Systems 1. Theoretical and methodological
aspects. Springer-Verlag, 1987.

[51 M. Lucas. Equivalence classes in object space modelling. In T. L. Kunii, editor, Proc. of Working
Conference on Modeling in Computer Graphics, pages 17-34, IFIP TC 5/WG 5.10, Springer Verlag,
Tokyo, Japan, April 1991.

[6) J.S. Gero (Eds.). Artificial Intelligence in Design. Springer-Verlag, 1989.

44

[7] E. Lang, K.U. Carstensen, and G. Simmons. Modelling Spatial Knowledge on a linguistic Basis. Lecture
Note in Artificial Intelligence, Springer-Verlag, 1991.

[8] F. Giunchiglia and E. Trucco. Object Configuration by Incremental ill-described Spatial Constraints.
Technical Report DAI Research Paper NO. 400, Department of Artificial Intelligence, University of
Edinburgh, 1988.

(9] P. Veerkamp and P.J.W. ten Hagen. Qualitative reasoning about design objects. In 5th International
Conference on the Manufacturing Science and Technology of the Future, Enschede, Pays-Bas, June 1991.

[101 S. Donikian. Une approche diclarative pour la creation de scines tridimensionnelles : application a
la conception archAitecturale. PhD thesis, University of Rennes 1, IRISA, Campus de Beaulieu, 35042
Rennes Cedex, December 1992.

[11] A. Herskovits. Language and spatial cognition. Cambridge University Press, 1986.

[12] M. Aurnague. Contribution 4 l'dtude de la simantique formeile de l'espace et du raisonnernent spatial:
ia localisation interne en franCais, simantique et structures infirentielles. PhD thesis, Universiti Paul
Sabatier, IRIT, 118, route de Narbonne, 31062 Toulouse Cedex, February 1991.

[13] S. Donikian and G. Higron. A declarative design method for 3d scene sketch modeling. To appear in
EUROGRAPHICS'93 Conference Proceedings, Barcelona, Spain, September 1993.

(14] J.F. Allen. An interval based representation of temporal knowledge. In Proceedings of the seventh
International Joint Conference on Artificial Intelligence, pages 221-226, August 1981.

[15] T. Granier. Contribution ii l'tude du temps objectif dans le raisonnement. Technical Report 716-1-73,
IMAG, Fivrier 1988.

[16] S. Donikian and G. HWgron. The kernel of a declarative method for 3d scene sketch modeling. In
Graphicon'92, to appear in Programming and Computer Science, Moscow, Russia, September 1992.

[17] P.E. Gill, S.J. Hammarling, W. Murray, M.A. Saunders, and M.H. Wright. User's Guide for LSSOL
(version 1.0). Technical Report SOL 86-1, Department of Operations Research. Stanford University,
1986.

[18] K. Bouatouch and P. Tellier. A two-pass physics-based global illumination model. In Proceedings of
Graphics Interface 92, Vancouver, Canada, May 1992.

45

MIII

The Geometry in Constraint Logic Programs

Thomas Dub6 " Chee-Keng Yap t

dube'cs.nyu.edu yap•acs.nyu.edu

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street
New York, New York, 10012

Abstract

Many applications of constraint programming languages concern geometric domains. We propose
incorporating strong algorithmic techniques from the study of geometric and algebraic algorithms into
the implementation of constraint programming languages. Interesting new computational problems in
computational geometry and computer algebra arises from such considerations. We look at what is
known and what needs to be addressed.

1 Introduction

It is now widely recognized that the programming paradigm of constraint satisfaction is a fundamental one
which raises new issues for the programming language community. Such issues are covered under the rubric
of "logic programming" and include new language constructs, logical issues, and programming semantics
and pragmatics. The book of DeGroot and Lindstrom [8] is a representative of such concerns. In the general
setting, the focus is mostly on syntactic properties of substitution and equality', with associated algorithmic
problems such as unification.

It is no surprise that the deepest applications of constraint satisfaction occurs in very classical domains of
mathematics. Some seminal papers in constraint programming (e.g., [1,29,20]) hint at such domains by way
of examples. These domains have been investigated by algebraists and geometers for centuries, and include
various subrings of the complex field C and the affine or projective spaces over them. Many properties are
known about such domains, and a general purpose search method cannot hope to re-derive such properties
in a feasible way. Moreover, there is a diverse and active community dedicated to finding efficient algorithms
for computational problems in these domains. The question that must be addressed, and which is the focus
of this position paper, is how could such results be incorporated into the construction of powerful and practical
constraint programming languages? For logic programming to have the kind of impact that its advocates hope
for, users must be able to "conveniently and efficiently" solve realistic large problems with logic programs.
As for the dual goals of convenience (naturalness) and efficiency, note that the bulk of research in logic
programming lies in logical analysis. This will surely contribute to the first goal, but only peripherally to
the efficiency goal. It is well-known that the complexity of problems in the above classical domains must
be carefully negotiated in order to elicit the tractable and avoid the intractable. Research in computational
geometry and computer algebra has gained much insight into the boundary between the tractable and the
intractable, and constraint programming can benefit by exploiting the fruits of this research.

The concern to incorporating powerful algebraic theories into the logic programs is addressed in the
Constraint Logic Programming (CLP) framework of laffar and Lassez [16]. The fundamental issue of se-
mantics and logical properties of such a framework has been worked out. What we hope to address are

*On sabbatical leave from Holy Cross College.
tWork supported by NSF grant #CCR-87-03458.
Since it is hard to imagine logic without equality, these are usually identified as logical properties.

46

the algorithmic issues that arise, and how to incorporate powerful algorithmic techniques to the underlying
interpreter/logic engine.

2 Geometric Domains

In this paper, we use the term "constraint programming" to refer to those aspects of logic programming con-
cerned with incorporating various mathematical structures into logic languages.2 Such aspects are dependent
on the particular domain; we are not interested in "general truth maintenance". But "domain-dependence"
is a relative concept as we wish to restrict our domain as little possible within certain (informal) parame-
ters. Roughly speaking, the domains of interest in this paper can be described as "geometric". Algorithmic
problems in such domains tend to have at most a single exponential (worst case) complexity (e.g., (6,10]). In
contrast, domains which might be more "algebraico-geometric" tend to have double exponential complexity
[21.9,33]. This contrast (which has been observed by researchers in computer algebra) is. informally, the
difference between looking at complex varieties (geometry) as opposed to studying complex polynomial ideals
(algebraic geometry). This observation suggests that we must exploit geometric properties in order to reduce
complexity.

It might be objected that single-exponential complexity is still too high. In general, this is unavoidable
[27,71 and a central goal of algorithmic research is to identify the interesting subcases which admit simpler
solutions. This worst-case complexity can be ameliorated in several effective ways. including the use of
randomization. The exponential behavior is often a function of only the dimensionality of a problem and
with fixed dimensions, these problems becomes polynomial. In fact, much of the field of computational
geometry concerns problems in 2 or 3 dimensions (this notion of dimensionality is to be distinguished from
the dimensionality arising from the number of degrees of freedom). Experience has shown that although
a domain may contain intractable problems, this worst-case behavior does not necessarily extend to all
problems in the domain: it is often the case that problems of interest admit efficient solutions.

Finally, it must be argued that since the language PROLOG is already capable of simulating an alternat-
ing Turing machine [271, adding a constraint solver for a particular domain does not increase the asymptotic
complexity of evaluating a constraint program. In fact. what we are proposing is the use of special purpose
constraint, solvers which can exploit the geometric aspects of the problem to speed the computation. One
may wish to give up the expressive power of PROLOG and restrict oneself to a language with bounded
complexity. But even here, most natural CLP languages have at least DEXP time query complexity [7,51.

We now classify the various geometric domains of interest.

One dimension. In "I-dimension", we have subrings of C: integers, rationals, real algebraic numbers and
general algebraic numbers. All these domains have associated exact computational methods. Already here,
one can run into (single) exponential time problems.

It should be emphasized that when we speak about integers and real numbers we do not mean "machine
integers" or floating point numbers. While machine integers and floating point numbers are also appropriate
for many problems. there are also many problem domains for which they are not well suited. Machine
integers impose an a priori bound on the size of solutions (and intermediate results) that may be too
restrictive for many problem domains. Floating point numbers provide an approximation of real values.
This approximation includes a certain amount of error which unavoidable builts up as values are combined.
The error which is accumulated while solving large systems may become unacceptably large. Furthermore,
there are many problem domains (for example computational geometry) in which exact results are required.
So one may think of "BigNum" exact arithmetic packages as the fundamental substitute for such machine
numbers. We are currently working on several extensions to such packages such as the variable precision
arithmetic which is described below.

General dimension. We can reduce a large part of geometric constraint programming to the solution
of systems of algebraic equations. For our purposes, these equations have rational coefficients. The notion
of "solutions" (cf. [34]) is by no means straightforward: the simplest is to indicate where the system is
solvable. The next is to compute the dimension of the solution set. A more elaborate notion of solution is

2 Admittedly, this terminology is far from perfect but it fits the general understanding of this term.

47

sometimes required: for instance, some applications need a sample point in each connected component of
the solution set. The whole enterprise gets more complicated if we do not work in an algebraic closure. The
most important instance of this is where we only want real solutions In the real field. we have the ordering
property and the solution sets are semi-algebraic rather than algebraic. The complexity of these problems
(algebraic and semi-algebraic) have been much clarified in recent years. W1e shall think of these situations as
setting the upper limit for what we hope to incorporate into a strong constraint logic language. We note that
the CLP(IZ) system [141 is targeted for exactly this domain. A major research goal is to identify subdomains
where more efficient techniques can be used.

Linear and semilinear case. Mathematically, the linear case is essentially completely understood, being
essentially linear algebra. But algorithmically, there are many unexplored questions. Consider a system of
m linear equations in n variables, represented by an m x (n + 1) matrix M. Note that all but the last column
of M represents a variable. A fundamental question is how to determine maintain the solvability of the
system M under insertion and deletion of equations? The complexity bound should be related to L(M), the
number of non-zero entries in M. Before considering the dynamic case, consider the following heuristic to
determine the solvability of M: for each column of M that represents a variable that has only one non-zero
entry, remove the row containing that entry. With each row removal, columns with only zeroes are created:
these columns are also removed. Let M' be the reduced matrix. To justify this transformation, it is easy to
show: any solution of Al' can be extended to a solution of M, and every soluticn of M can be obtained in this
way. (Of course, we should keep track of the deleted rows and columns so that we can recover the solution
of M from the solution of M'.) We may now assume that every column in M' has at least two non-zero
entries. We wish to repeat the above process. If a column has exactly two non-zero entries, we consider the
two rows r, r' that contain these two entries: replace r' by a linear combination r" = ar + br', (a, b reals),
so that, the column now has only one non-zero entry. As above, we may delete r. So in effect, we have
replaced r, r' by r". Note that L(M') is not increased in this way. Repeating this, we eventually obtain M"
in which every non-last column has at least 3 non-zero entries. In general, suppose every non-last column of
M" has at least i > 3 non-zero entries. We may continue this process of eliminating variables, but we can
no longer ensure that L(M") is not increased. But there is a case where this still works: suppose rl .. , ri
are i rows such that there are at, least i columns (not counting the last column) all of whose non-zero entries
all belong the these i rows. Moreover, the corresponding i x i submatrix is non-singular. Then by a linear
transformation, we may convert the submatrix into triangular form. Then these i rows may be replaced by
one of the transformed rows, justified as before, without increasing L(M"). Although we cannot ensure this
special case, this method might still work well in practice (compared to Gaussian elimination), a subject
for experimental stlidies. The harder question is how to maintain the solvability above under insertion and
deletion of equations. It seems that a randomized approach (see below) should work. Another instance of
solving linear constraints is seen in [30.31].

By "semilinear" we refer to the use of linear inequalities. Much is known about this case via convex
polytope theory and linear programming. The fundamental problem here is the computation of convex hulls.
This is extremely well-studied in computational geometry and great strides have been made in recent years
in understanding its computational complexity. In [19], a transformation is introduced which improves the
detection of redundant linear inequalities. But the dynamic version of this problem (which is most critical
for constraint programming) is only understood in the planar case. For instance, it is well-known that we
can maintain the convex hull (=feasible region) of a set of halfspaces using O(log 2 n) time for insertion or
deletion of a halfspace. Recently, Schwartzkopf [25,26] obtained efficient, apparently practical, randomized
algorithms on maintaining convex hulls in arbitrary dimensions.

Planar and 3-D geometry. Applications of geometry in describing 2- or 3-D scenes is widespread, from
CAD/CAM, to computer graphics, to physical simulations and robotics. In [11] we proposed a geometric
editor called LINEToOL, based on polynomial constraints. Such an editor allows a user to construct a
geometric scene using constraints and to query the scene (is this point inside this region?) and to revise the
constraints. The underlying (numerical) representations is exact. Unfortunately. not much is known about
how to exploit the special structure of planar constraints, and a general polynomial solver is still needed.

48

3 Polynomial Constraints

Most interesting constraint systems in the literature (other than purely logical constraints) can be modeled
by systems of polynomial inequalities. There are several versions of this, and we briefly note the known
algorithms and their prospects.

System of polynomial equations. The simplest constraint consists of a set of polynomials with rational
coefficients. If we are interested in solutions in complex numbers then algorithms based on the Gr6bner bases
method ([21) and Wu's method ([32,4]) are available. In fact, many computer algebra systems (MAPLE,
MATHEMATICA, etc) has some version of the Gr6bner basis algorithm. As an applicatiii for such systems,
we can solve simple electrical circuits designs (cf. (29,15]). The worst case complexity here is essentially single
exponential time.

Real solutions. If we are only interested in only real solutions to the above systems of equations, then
the complete method is based on cell decompositions due to Collins. Here, the algorithm is essentially
double exponential time. More recently, there are new methods (such as multivariate resultants) that avoid
cell-decomposition and achieve single exponential space bounds [23,3,13]. In the real field, we have a total
orderiili so that we can allow inequalities. The solution sets are semialgebraic sets. For working over the
reals, we can always replace inequalities by equalities if we are willing to introduce new variables: that is we
replace an inequality f >_ g by f = g + a2 where a is a new real variable.

All of the above situations are infeasible in the worst case. In practice, Wu's method and Gr6bner bases
methods can be quite effective for some problems. In contrast, some newer resultant methods seems less
useful because they achieve the worst case behavior for all input instances. Roughly speaking, the difference
(between Wu's and Gr6bner methods on one hand and the resultant methods on the other) is that the "best
case behavior" of former is better than the best case behavior of the latter. But when we are interested
in real solutions, all these methods yield only partial information, and we have nothing better than cell
decomposition in some form. The real challenge is to exploit special properties of the problem at hand. For
instance, these algorithms can be "dynamized" to allow users to add or delete polynomial constraints, while
the system maintains a solution. This should be more efficient than resolving from scratch. In fact, many
applications have only quadratic polynomials. Can this be exploited?

Zero-dimensions. One important case is the zero-dimensional case. In this setting some double-exponential
time algorithms become single-exponential. We still get useful constraint systems based on 0-dimensional
solvers: if the solution set has a positive dimension (dimensionality can be computed relatively fast) then the
system is underspecified and we can ask the user to introduce more constraints. Alternatively (cf. [11), we
can ask the user to specify a subset of the variables as independent. If U = ul, u u, are independent
and X = zxi, x2 ,x are dependent, we can treat the polynomial constraints as polynomials whose vari-
ables are X and whose coefficients belong to the field of rational functions of U. By choosing an appropriate
subset of independent variables, we can produce a system whose solution set is zero-dimensional. The idea of
dependent variables can be generalized into a dependency graph. The user can also be given an opportunity
to reduce the dimensionality of the solution set by specifying additional constraints. For example, instead of
identifying a variable as independent, the user could alternatively specify a value for that variable. Although
the solution set produced will be less general, this has the advantage of being computationally faster. In this
context, the work of Pedersen [22] on generalizing Sturm theory to higher dimensions is relevant. Like the
classical Sturm theory, the generalized algorithm tells us about real solution points. Although this method
is single-exponential time, its practical significance is not yet understood.

Variable clustering. In addition to the powerful methods which always succeed (but at high cost), we
can hope to make large systems tractable by employing some heuristic methods. In particular, we can
provide mechanisms for identifying clusters of variables that interact only minimally with other variables
in the system. In the geometric editor LINEToOL[I]. a user can usually identify such clusters. This
is because we usually construct a cluster of geometric objects (points, lines. etc) relative to previously
constructed objects. We could then solve the associated equations for these cluster variables, assuming that
the "relatively independent" variables that they depend upon has been solved.

49

A notion related to variable clustering is the observation that many geometric objects introduces vari-
ables in groups. For instance, if we deal with planar point sets, then each point p introduces a pair of
variables p,,. These pairs of variables are involved in constraints is a symmetric manner. For instance.
the constraint that the distance between p and q is one becomes (p, - q,)2 + (py - q•• 2 = 1. Can such
groupings be exploited? A recent paper of Stifter [28] indicates a promising approach.

Other techniques. A very potent techniqu- to combat intractability is randomization. See the work of
Kaltofen [17,18] and Schwartz [24]. Also, the use of datastructures in algebraic computing has not been
developed up to this point, and we are investigating such issues.

4 Exact Arithmetic
In working with exact arithmetic over the integers or any algebraic number ring, the cost of performing
arithmetic operations grows as the number of bits needed to represent the objects grow. Note that with
algebraic numbers, "exact arithmetic" is possible although, beyond some approximation to the value, we
must store auxiliary information such as the defining polynomial of the number.

There must be a clear understanding as to the fundamental importance of exact arithmetic. Constraint
programming language implementations tend to use machine floating point arithmetic. Despite the great
efficiency of machine arithmetic hardware, one is never sure of the result of such a computation. We could
aim at a more modest goal of determining when the computed results are reliable. A well-known solution
is to maintain intervals of uncertainty, but these intervals tend to grow so rapidly to as render correct
computations suspect. At any rate, it is our belief that all such attempts to avoid exact computation is only
a partial solution: no reliable constraint programming language implementation can avoid the ultimate use
of some exact arithmetic package. On the other hand. we believe that the traditional BigNum packages must
be re-engineered for use in logic programming languages. Recently, several promising approaches to doing
exact arithmetic computation is explored in [12].

There are many situations in which approximate values with a pre-specified bounded error suffice for
exact answers. In applications such as computer graphics, we may only need to locate a point up to the
resolution of the screen. As a variation of this idea, in LINETOOL we allow arbitrary zooming. but here we
may increase the resolution of a point as the application demand. Another application is checking inequality
constraints. Sometimes, a low accuracy may be enough ascertain if a particular constraint is satisfied. Using
approximate values can save much of the cost of computing with algebraic quantities. However, it is not
clear how to determine a priori how much error can be tolerated in an expression. For example, if we wish
to determine whether a - b is greater then zero, we can tolerate coarse approximations of a and b. except in
the case that the difference between the two values is small. To circumvent this problem. we propose looking
at variable precision arithmetic. In this scheme, each value will be computed to a requested precision, but
with the ability to refine the value to more precision if requested. Consider again the constraint a - b > 0.
The values of a and b may be first computed to a coarse accuracy, perhaps within 0.0001. If the values are
a = 2.0123 and b = 1.9329, then the constraint is satisfied. But, if instead the values at this accuracy were
determined to be a = 2.0123 and b = 2.0122, then more precision is needed and requested. In any event, we
will determine with no uncertainty whether the constraint is satisfied.

The solution values which satisfy the constraint system may themselves be computed only to within
acceptable tolerances. In this case, requests for enhanced precision may come directly from the user. The
system can include a value prober to allow the user to directly query result values and determine properties
satisfied by these values.

5 Final Remarks

Incorporating geometric constraints into logic programming requires sophisticated algorithmic techniques
because a general purpose solver would generally be too inefficient. Many new algorithmic issues arise. To
test some of these ideas, we are building a prototype of a planar geometry editing system in the style of
ThingLab or LINETOOL. One goal of this system is to produce a topologically correct model. which can
accurately represent the relationships between points which may be arbitrarily close together. To achieve

50

this goal, we use use exact methods and algebraic numbers. The high cost associated with algebraic numbers,
is somewhat alleviated by the use of variable precision techniques which do not sacrifice the exactness of the
computation. Nothing in the constraint solving and exact model representation are specific to the domain
of planar geometry. With some modifications, this subsystem could be reused for other applications. We
believe that a carefully engineered subsystem dealing with linear constraints is already very useful (see
[31,19]), presenting many interesting research question.

References

[1] A. Borning. The programming language aspects of thinglab, a constraint-based simulation laboratory.
ACM Transactions on Programming Languages and Systems, 3:353-387, 1981.

[2] B. Buchberger. History and basic features of the critical-pair/completion procedure. J. Symb. Comput.,
3:3-38, 1987.

[3] J. Canny. Some algebraic and geometric computations in pspace. In Proceedings of the Twentieth
Annual ACM Smposium on Theory of Computing. pages 460-467. 1988.

[4] S.C. Chou. Proving elementary geometry theorems using Wu's algorithm. Contemporary Mathematics,
29:243-286, 1984.

[5) J. Cox and K. McAloon. Decision Procedures for Constraint Based Extensions of Datalog. chapter 2.
MIT-Press, 1993.

[6] J. Cox, K. McAloon. and C. Tretkoff. Computational complexity and constraint logic programming
languages. In Logic Programming. Proceedings of the North American Conference, pages 401-415, 1990.

[7] J. Cox, K. McAloon, and C. Tretkoff. Computational complexity and constraint logic programming
languages. Annals of Math. and Artificial Intellegence. 5:163-190, 1992.

[8] D. DeGroot and G. Lindstrom. Logic Programming. Functions. Relations, and Equations. Prentice-Hall,
1986.

[9] Thomas W. Dubý. The structure of polynomial ideals and Gr6bner bases. SLAM Journal on Computing,
19(4):750-773. 1990.

[10] Thomas W. Dub6. A combinatorial proof of the effective nullstellensatz. J. Symb. Comput., 1993. to
appear.

[11] Lars Warren Ericson and Chee K. Yap. The design of LINETOOL: a geometric editor. ACM Symposium
on Computational Geometry. 4:83-92. 1986.

[12] Steven Fortune and Christopher van W\yk. Efficient exact arithmetic for computational geometry.
Symposium on Computational Geometry. 9, 1993. To appear.

[13] D. Grigor'ev and N. Vorobjov. Solving systems of polynomial inequalities in subexponential time.
Journal of Symbolic Computation, 5:37-64, 1988.

[14] N. Heintze, J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP()Z) Programmer's Manual, version
1.2 edition. September 1992.

[15] N. Heintze, S. Michaylov. and P. Stuckey. Clp(r) and some electrial engineering problems. In J.-L.
Lassez. editor, Logic Programming, Proceedings of the Fourth International Conference, pages 675-703,
1987.

[16] J. Jaffar and J.L. Lassez. Constraint logic programming. In Fourteenth Annual .4CM Symposium on
Principles of Programming Languages. pages 111-119. 1987.

[17] E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali. editor, Ran-
domness in Computation: Advances in Computing Research. JAI Press, Greenwich. Connecticut, 1987.

51

[18] E. Kaltofen. Greatest common divisors of polynomials given by straight-line programs. Journal of the
ACMA 35:231-264, 1988.

[19) J.L. Lassez, T. Huynh, and K. McAloon. Simplification and elimination of redundant linaer arithmetic
constraints. In Logic Programming, Proceedings of the North American Conferennc. pages 37-51, 1989.

[20] William Leler. Constraint Programming Languages: their specification and generation. Addison-Wesley.
Reading, Massachusetts, 1988.

[21] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for commutative semigroups
and polynomial ideals. Advances in Mathematics, 46:305-329, 1982.

[22] Paul Pedersen. Counting real zeroes. Technical Report 243, NYU-Courant Institute, Robotics Labora-
tory, 1990. Courant Institute doctoral thesis.

[23] J. Renegar. On the computaional complexity of approximating solutions for real algebraic formulae.
Technical Report, 858, School of Operations Research and Industrial Engineering. College of Engineering.
Cornell University, 1989.

[24] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of
the ACM. 27:701-717. 1980.

[23] Otfried Schwarzkopf. Dynamic maintenance of geometric structures made easy. IEEE Symp. on Foun-
dations on Computer Science, 32:197-206. 1991.

[26] Otfried Schwarzkopf. Dynamic maintenance of convex polytopes and related structures. PhD thesis,
Department of Mathematics. Free University Berlin, 1992.

[27] Ehud Shapiro. Alternation and the computational complexity of logic programs. J. Logic programming.
1:19-33. 1094.

[28] Sabine Stifter. Geometry theorem proving in vector spaces by means of Grobner bases. RIS(-Linz
Report Series No. 93-12, Research Inst. for Symbolic Comp.. Johannes Kepler Univ.. Austria. 1993.

[29] G. Sussman and G. Steele. Constraints - a language for expressing almost-hierarchical descriptions.
Artificial Intelligence. 14:1-39. 1980.

[30) Christopher J. van Wyk. A high-level language for specifying pictures. ACM Trans. on Graphics,
1:163-182. 1982.

[31] Christopher J. van Wyk. Arithmetic equality constraints as C++ statements. Software-Practice and
Experience, 0:1-27. 1991.

[32] W.T. Wu. Basic principles of mechanical theorem proving in geometries. Journal of Automated Rea-
soning. 2:221-252, 1986.

[33] Chee-Keng Yap. A new lower bound construction for commutative Thue systems with applications.
Journal of Symbolic Computation, 12:1-28, 1991.

[34] Chee-Keng Yap. Fundamental Problems in Algorithmic Algebra. Princeton University Press, (to appear,
1994).

52

On the Semantics of Optimization Predicates in CLP languages

Francois Fages

LIENS-CNRS, and LCR Thomson-CSF,
Ecole Normale Sup~rieure, Domaine de Corbeville,

45 rue d'Ulm, 91404 Orsay Cedex,
75005 Paris, France France.

fages(admi.ens.fr

Abstract

The Constraint Logic Programming systems which have been implemented include various higher-
order predicates for optimization. In CLP(FD) systems, several optimization predicates, such as
ainirize(G(X) ,fCX)),minimize-aaxinua(G(X), Ef i(X),... fn(X)]), are implemented by using branch
and bound algorithms. In CLP(R) systems, the Simplex algorithm used for satisfiability checks can also
be used for linear optimization through the predicate ruin(f (M)) which adds to the constraints on X the
ones defining the space where the linear term f(X) is minimized. These optimization constructs do not
belong however to the formal CLP scheme of Jal'ar and Lassez, and they lack a declarative semantics.
In this paper we propose a general definition for optimization predicates, for which one can provide both
a logical and a fixpoint semantics based on Kunen-Fitting's semantics of negation. We show that the
branch and bound algorithm can be derived as a refinement of the implementation of the semantics using
CSLDNF-resolution, and that the branch and bound algorithm can be lifted to a full first-order setting
with constructive negation.

1 Introduction
The Constraint Logic Programming systems which have been implemented include various higher-order
predicates for optimization. In CLP(FD) systems as CHIP, defined over finite domains, several optimization
predicates, such as minimize(G(X) f (X)), or minimize-maximum(G(X), If 1(X) ,.... fn(X)]), are imple-
mented with branch and bound algorithms (8]. In CLP(R) systems, defined over real numbers, the Sim-
plex algorithm used for satisfiability checks can also be used for linear optimization through the predicate
rmin(f(X)) which adds to the constraints on X the ones defining the space where the linear term f(X) is
minimized. These optimization constructs do not belong however to the formal CLP scheme of Jaffar and
Lassez [5], and they lack a declarative semantics.

The first problem to solve is the dependence of the result on the ordering of the goals. In many systems
indeed the constraints on the variables appearing in the optimization goal are passed to the optimization
process, producing the following problematical behavior:

p() :- X>=O.

? X>=1 , Miniuize(p(X),X).
X=1

? minimize(p(X),X) , X>=I.
no

Clearly the optimization process should be localized to the goal given as argument, and the other constraints
inherited from the other goals should not change the optimality condition. Therefore the correct answer in
the previous example is no. If X = I was the intended answer, one should write:

53

? minimize ((X>= 1 ,p(X)). X).
X=1

With this provision one can give a declarative reading to CLP programs containing optimization predi-
cates. We show that Kunen's three-valued semantics of logic programs with negation is all we need to do so,
and that optimization predicates can thus be treated as higher-order constraints. After reviewing complete-
ness results in the CLP scheme, we show that the well-known branch and bound algorithm can be derived
as a refinement of the implementation of the semantics using CSLDNF-resolution, and that the branch and
bound algorithm can be lifted to a full first-order setting with constructive negation.

2 The declarative semantics of optimization predicates

Definition 1 Let (A, <) be a totally ordered structure. The minimization higher-order predicate

rnin(G(X, Y), [X], f(X, Y))

is defined as a notation for the formula:

G(X, Y)^AVZ (;(X, Z) D f (X, Z) 14 f MY))

An optimization constraint logic program (OCLP) (resp. goal) is a CLP program (resp. goal) which may
contain occurrences of the minimization predicate in rules bodies (resp. in goals).

The second argument to the predicate min is a possibly empty list of "protected- variables, [X]. Only
the variables of the goal, away from X. are affected by the optimality condition.

As is well known, general first-order formulas can be normalized [6). An OCLP program P can be
transformed into an equivalent normal CLP program containing negations, by replacing each occurrence of
the atom

min(G(X, Y), [X]. f(X, Y))

by the conjunction of atoms
G(X, 1"), -p(X, Y)

where p is a new predicate symbol, and by adding to the program the rule:

p(X, Y) - f(X, Z) < f(X, Y)I;G(X. Z).

In the following, P denotes the normal CLP program obtained by repeatedly applying this transformation
to P, and P" denotes the Clark's completion [6] of P (without Clark's equality axioms as symbols are
interpreted in A).

Definition 2 The semantics of an OCLP program P is the set of 3-valued consequences of F A th(A). A
correct answer to an OCLP query G and a program P is a set of constraints c such that

-P" A th(A) ==3 V(c - G) A 3(c)

Going back to the example of the introduction, we can check that the correct answer to

X > l, min(p(X), [],X)

is no, that X > 1 is a correct answer to

X > l, .7in(p(X), [X], X),

and that X = I is the correct answer to the goal

,i,,(X > lip(X), X).

54

In general the answers of an OCLP query are non ground, and can be arbitrary sets of constraints. Consid-
ering the rule

p(X,) -0< X, _< Y.

X = Y is a correct answer to the query

min(p(X, Y), [], Y - X).

The definition of OCLP programs does not exclude recursion though optimization predicates. A similar
problem is discussed in [1] and [2] where the stratified semantics of aggregates are generalized using the
well-founded and stable model semantics of logic programs. In the context of OCLP programs, the natural
theory to apply is Fitting-Kunen's 3-valued semantics, which does not coincide with stratified and well-
founded semantics. jFrom a practical point of view one can notice that definite OCLP programs usually
don't contain recursion through optimization. In general however, we have:

Proposition 1 Any normal logic program is equivalent to a definite OCLP program.

Proof: Let us consider the OCLP program over the natural numbers obtained from the normal logic
program by replacing each negative literal -p(X) by rnax(q(X, y), [X], y) where q is a new predicate symbol,
and by adding the rules

q(X, 0).
q(X,y) - p(X).

We have 3X3y rnax(q(X, y), [X], y) iff 3X3yV: q(X, y) A -,(q(X, z) A z > y)
iff 3X3y (y = 0 A -,p(X)) V (p(X) A Vz-,(a(X, z) A z > y))
iff 3X3y y = 0 A -p(X)
iff 3X-,p(X). 0

3 Completeness results

The completeness result of SLDN F-resolution w.r.t. to the three-valued semantics of logic programs [4] relies
on the properties of the finite powers of Fitting's operator 4t. These properties generalize to normal CLP
programs:

Theorem 1 [3] [7] Let A be a structure and P a normal CLP program. Then thf following are equivalent:

* 4.[1 n(cjG) = t for some finite n,

* th(A) AP" k3 V(c - G) A 3(c)

In this way Stuckey [7] proved the completeness of CSLDCN-resolution (i.e. constraint SLD-resolution
with constructive negation) for normal CLP programs. CSLDCN-resolution is based on the CSLD inference
rule for positive goals, and on the CSLDC'N inference rule for negative goals:

C SLD ' -cjA j,'"" 7A j,.... ,A n th(A) ý= 3(c')
,--c'IAj,..... Ai-1, B1 Bm, A +j l_..,. An

where c' = c A Ai = B, (B - Bi,..., Bm) E P.

CSLDCN '- clAj, ... , I-"Ail..., A,• th(A) ý- 3(c')
-- e'IAl,..... Aj_ 1, Ai+l,..... An

where c' = c A -,3(cl) A ... A --3-(ca) (the existential closure being over variables not in c),
and {c A 01, ... , cA cn } are the successful derivations of the goal - c A A1.

Theorem 2 [7] Let P be a normal OCLP program over a structure A.
If th(A) A P" •3 V(c --- G) A 3(c) then the C.SLDCN-derivation free for (cIG) contains successful

derivations with constraints cl,...en c, such that Ak c D 3~cl V ... V 3~c,.
If th(A) A ý=3 V(c - -,G) A 3(c) then the CJSLDCN-derivation tree for (c(G) is finitely failed.

In particular the completeness of CSLDNF-resolution (i.e. constraint SLD-resolution with negation by
failure) follows under the non-floundering assumption.

55

4 The branch and bound algorithm as negation by failure

In this section we study the application of the optimization predicate over a goal G(X, Y), such that all the
successful CSLD-derivations of G(X, Y) instanciate the arguments X and Y to some values. This is typically
the case of optimization in CLP(FD), where enumeration is mixed with constraint propagation in order to
palliates the incompleteness of the constraint solvers f8].

Under these assumptions, it is clear that the negative goals introduced by the optimization predicates
(in G(X, Y), -p(X, Y)) never flounder. Thus CSLDNF-resolution is complete w.r.t. the (3-valued) semantics
of such OCLP programs. For simplicity, let us consider the goal

e(X)j"1in(G(X), [,fix)),

and its CSLDNF-derivation tree.
e(X) I G(X),-p(X)

Success

cO I not p(X) cn Inot p(X)

cO. f(Y)<f(X) I G(Y) cn, f(Y)<f(X) I G(Y)

c 1[] fail
success

For the moment let us consider the search for only one successful derivation of the optimization goal,
not all successful derivations. Under the normal left-right order traversal of the tree, when a successful
derivation is obtained for e(X)IG(X) with constraint ci, then cil-'p(X) remains to be shown, and for this,
another derivation tree is developed for the goal ci, f(Y) < f(X)IG(Y). If this subtree is finitely failed then
we obtain a successful derivation for the optimization goal. Otherwise if the derivation subtree contains a
successful derivation, then it is a failure for the optimization goal, and the successful subderivation is lost.
Therefore a derivation subtree for G is developed for each successful derivation of e(X)IG(X).

The well-known branch and bound algorithms can be presented as optimized versions of CSLDNF-
resolution procedures, that exploit the successful derivations found in the refutation of the optimality of a
solution. In the backtracking version of the branch and bound algorithm (BB), a single derivation tree for G
is developed. When a successful derivation is found (under the left-right order traversal), the corresponding

56

solution Xi is memorized, and the search by backtracking continues with the additional constraint f(X) <
f(X,). The additional constraint is used to prune the search space and explore only a portion of the derivation
tree:

e(X),(f(X)<f(Xi)) I G(X)

•I••(1 [1 fail
XO Xn-1 Xn

In the BB algorithm, the last memorized solution, X, ,is a solution to:

niin(e(X)IG(X), [], f(X))

To show that X. is indeed a solution to

e(X)I nin(G(X), [1] f(X))

it suffices to check that the goal
e(X), f(X\) < f(X.)IG;(X)

fails. If it is not the case, then the goal e(X)jnzin(G(X), (], f(X)) must fail. The gain in efficiency over
CSLDNF-resolution is obvious as only two derivation trees are thus developed in this way.

Therefore two algorithms are possible for finding the answers to the goal

e(X)Imin(G(X), [], f(X))

depending whether the branch and bound algorithm is applied initially to e(X)IG(X) or to G(X):

Algorithm 1 BB algorithm with environment constraints.

1. compute one solution X. to min(e(X)IG(X), [], f(X)) by using BB algorithm,

2. check by CSLDNF-resolution that e(X), f(X) < f(Xn)jG(X) admits no solution, otherwise fail,

3. return Xn, or if all solutions are needed, return the answers to e(X),f(X) = f(X,)IG(X) computed
by CSLDNF-resolution.

Algorithm 2 BB algorithm without environment constraints.

1. compute one solution X,, to rnin(G(X), [], f(X)) by using BB algorithm,

2. return the solutions to e(X), f(X) = f(X,)IG(X) computed by CSLDNF-resolution.

57

In actual CLP(FD) systems with optimizwon predicates, algorithm I without step 2 is generally im-
plemented, hence the difficulties mentioned in the introduction concerning the declarative semantics and the
possibility to treat optimization predicates as higher-order constraints. Algorithm 2 does not use the con-
straints inherited from the environment to prune the search space for finding the optimal cost of a solution
(step 1). Note however that, under termination assumptions, step 1 in algorithm 2 can be done at compile
time.

Note also that other versions than the backtracking version of the branch and bound algorithm can be
preferred for implementation in a CLP system. In the iterative version of the branch and bound algorithm,
once a successful derivation for G(X) is found, the corresponding solution X0 is memorized, and another
derivation tree is developed for f(X) < f(X 0) I G(X). When the derivation tree is finitely failed, the last
memorized solution is optimal.

G(X) . . . f(X)<f(Xn-1) I G(X) f(X)<f(Xn) I G(X)

[] [fail

XO Xn1
When heuristic search techniques are used in combination with constraint propagation, the iterative

version of the branch and bound algorithm makes it possible to change the order in which goals are selected,
according to the new constraints added and to the heuristic. For this reason the iterative version can be
practically more efficient.

5 The branch and bound algorithm lifted to the full first-order
setting with constructive negation

CSDLCN-resolution provides a complete procedure for general OCLP programs without the non-floundering
assumption. Let us consider the goal min(G(X), [), f(X)). On a successful derivation of G(X) with constraint
ci(X), constructive negation for the remaining goal

ci() -p(X)

consists in developing a complete derivation tree for

c,(X), f(Y) < f(X) I G(Y)

If ci(X) A do(X, Y), ... , ci(X) A dk(X, Y) are the constraints associated to the successful derivations of this
tree, then the negative goal is successful if the constraint

VY c(X) A -'do(X, Y) A ... A -dk(X, Y)

is satisfiable'.

Therefore a complete derivation tree for G is developed for each successful derivation of G(X) not
satisfying that condition:

1Note that if the structure is admissible I7] this condition is equivalent to a conjunction of existentially quantified disjulctions
of conjunctions of admissible constraints.

! 58

G(X), not p(X)

P• Success

cO(X) not p(X) cn(X) not p(X)

cO(X)f(Y)<f(X) I G(Y) cn(X)X(Y)<f(X) I G(Y)

do(X,Y) dk(X,Y) eo(X,Y) el(X,Y)
Now the transformations described in the previous section can be applied in a similar fashion here in

order to generalize the branch and bound algorithm to a full first-order setting. For instance the iterative
version of the generalized branch and bound algorithm consists in finding a successful derivation for G(X),
say with constraint co(X). then iterate finding a successful derivation for the goal

--3Xo(co(Xo) A f(Xo) _ f(X))IG(X)

which is equivalent to
(VX0 co(Xo) D f(X) < f(Xo))Ic;(x).

Note that as the structure is a total order, the constraint (VXo co(Xo) D f(X) < f(Xo)) is equivalent
to the constraint without universal quantifier f(X) < ko where k0 = minc.(x 0)f(Xo), when it exists. In
particular in CLP(R), linear programming algorithms permit to decide efficiently the constraints involved in
that restricted form of constructive negation, without having to rely on the admissibility of the structure R
result [7] which is based on generally unpractical quantifier elimination techniques.

The derivation trees developed in the iterative first-order branch and bound procedure are thus the
followings:

59

(X) . V Xn-1 (cii-l(Xn-1l)D v Xn1 (cn(Xn)D

f(X)<f(Xn-l)) I G(X) f(X)<f(Xn)) I G(X)

c0(x0)I [1 cn(XnD [1 fail
The procedure stops when the derivation tree is finitely failed, in which case the last memorized solution,

say ci(X), is such that
-Y A th(A) 13 VX c,(X) D G(X)

-* A th(A) f=3 -'3Y(VX ci(X) D f(Y) < f(X))IG(Y)
that is

PhA tih(A) 1=3 VYG(Y) D (3X ci(X) A f(Y) 1 f(X))

hence
ci(X) A VY--(ci(Y) A f(Y) < f(X))

is satisfiable, and is an optimal solution.

In this way both algorithms I and 2 of the previous section can be generalized to a full first-order setting:

Algorithm 3 CLP-BB procedure with environment constraints.

1. compute one answer constraint cn(X), to Ynin(e(X)IG(X), [], f(X)) by using BB algorithm.

2. check by CSLDNF-resolution that e(X), c,(X,), f(X) < f(X,,)IG(X) admits no successful derivation,
otherwise fail,

S. return cn(X), or if all solutions are needed, return the answers to e(X), c,(X,), f(X) = f(Xn)IG(X)
computed by C.9LDNF-resolution.

Algorithm 4 CLP-BB procedure without environment constraints.

1. compute one answer constraint c,(X) to min(G(X), [], f(X)) by using BB algorithm,

2. return the solutions to e(X),cn(X,),f(X) = f(Xn)IG(X) computed by CSLDNF-resolution.

6 Conclusion

Optimization higher-order predicates in CLP systems can be given a logical semantics based on the three-
valued consequences of logic programs with negation. We have shown that the well-known branch and bound
algorithms can be presented in this framework as specific optimizations of CSLDNF-resolution procedures.
Applying the same optimizations to CSLDCN-resolution, which is based on constructive negation, we ob-
tained a powerful generalization of the branch and bound algorithms to a full first-order setting, including
linear programming as a deterministic particular case.

Acknowledgement

It is a pleasure to acknowledge fruitful discussions with my colleagues at LCR and at LIENS, and to thank
Peter Stuckey for providing me with the references to the results on aggregates.

60

References

[1] S. Ganguly, S. Greco, C. Zaniolo, "Minimum and maximum predicates in logic programming". Proc. of
PODS'91, Denver, pp. 154-163. 1991.

[2] D.B. Kemp, P.J. Stuckey, "Semantics of logic programs with aggregates", Proc. of ILPS'91, San Diego,
pp. 3 8 7 -4 0 1 . 1991.

[31 K. Kunen, "Negation in logic programming", Journal of Logic Programming, 4(3), pp.289-308, 1987.

[4] K. Kunen, "Signed data dependencies in logic programming", Journal of Logic Programming, 7(3),
pp.231-245, 1989.

[5] J. Jaffar, J.L. Lassez, "Constraint Logic Programming", Proc. of POPL'87, Munich. 1987.

[6] J.W. Lloyd, "Foundations of Logic Programming", Springer Verlag. 1987.

[7] P. Stuckey, "Constructive negation for constraint logic programming", Proc. LICS'91, 1991.

[8) P. Van Hentenryck : "Constraint Satisfaction in Logic Programming", MIT Press 1989.

61

A higher-order extension of
constraint programming in discourse analysis

Tim Fernando
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
fernandoQcwi .n1

Abstract
Variables on which constraints are imposed incrementally can be said to carry "existential" force in

the following sense. Under a translation, commonly used in analyzing natural language discourse, of
first-order formulas into programs from quantified dynamic logic, such a variable is introduced (at the
level of formulas) by an existential quantifier. The present paper extends that translation to support
constraints on variables introduced, as it were, by universal quantification. The extension rests on a
certain program construct =: that can be interpreted (following Kleene's realizability analysis of universal-
existential clauses) by closing the collection of states on which the programs act under partial functions.
An alternative "reduced" interpretation of =, can also be A ven over sets of states from dynamic logic
(not unlike Concurrent Dynamic Logic). These interpretations can be related by what is essentially a
reduction to disjunctive normal form, involving so-called and-or computations.

A formalism for analyzing natural language discourse that has received considerable attention in certain
linguistic circles is Discourse Representation Theory (DRT), due to Kamp [8] and Heim [6]. The basic idea
in DRT is to capture the information a piece of discourse contributes by interpreting a natural language
sentence semantically as a binary relation on so-called Discourse Representation Structures (DRS's). A DRS
is a pair (D, C) consisting of a set D of discourse markers and a set C of conditions on them, formulated
as first-order formulas whose free variables are among the discourse markers. For example, the piece of
discourse

A man walks.

induces a transition from the empty DRS (0, 0) to the DRS ({x}, {man(x), walk(x)}). Similarly,

He sees a house.

sends ({z}, {man(x),walk(x))) to ({x, y}, (man(x), walk(x), house(y), see(x, y)}). It follows by relational
composition that

(*) A man walks. He sees a house.

takes (0,0) to ({x,y}, {man(x),walk(x),house(y), see(x,y)}). As will be made precise below, conditions
are introduced in a monotonic manner, with attention to consistency and entailment. That is, a condition
amounts to what is called a "constraint" in constraint programming. Thus, it is not unreasonable to describe
DRT as a form of constraint programming for discourse analysis. The same description applies to an extension
of DRT presented below,1 the purpose of which is best described by illustration. Notice that the variable for

IReaders familiar with Saraswat 114], however, should be cautioned that in the present paper, (i) quantifiers are employed
to introduce variables on which constraints can then be imposed, and (ii) parallel computations arise when a process spawns
multiple processes, which then proceed in a "conjunctive" fashion, with identically initialized but separate stores. This contrasts
with Saraswat 1143, where an existential quantifier is used to "hide" a variable, which, otherwise, might be shared by processes
running in parallel. (The concept of locality or scope analyzed in Saraswat 114] should not be confused with what is called
"force" below.) No claim is (of course) made here that (i) and (ii) represent the "proper" notions of quantification and
parallelism; only that there are works (e.g., Groenendijk and Stokhof 14,, Peleg 113], and the references cited therein) where
notions of quantification and parallelism different (in essential ways) from Saraswat 1141 are studied (and that such notions are
what concern the present paper). The clash in terminology is unfortunate, and surely ought to be resolved. The concluding
discussion returns to this point.

62

the man in (*) is implicitly bound by an existential quantifier. (This implicit binding is made explicit in a
translation discussed below, under which a man is rendered as 3x man(x).) By contrast, the variable for the
player in

(**) Every player chooses a pawn. He puts it on square one.

(from Groenendijk and Stokhof [4]) is bound universally. Now, the object of the present extension is

(t) to support the imposition of conditions on variables with universal force,
under a framework where conditions combine by relational con.position.

That is, the challenge of (t) is to analyze (**) under compositional principles identical to that for

A certain player chooses a pawn. He puts it on square one.

which is analyzed in much the same way as (*). Briefly, the difficulty is that the pronoun he in (**) must
refer not only to a particular player, but to every player. The solution below was introduced in Fernando
[2], where applications to natural language are taken up. The point of the present paper (beyond relating the
work mentioned to constraint programming) is to examine the rather remarkable feature of the extension
that a notion of parallel computation is introduced via an old "constructive" idea involving higher-order
witnesses.

To describe DRT formally, it is useful to start with first-order formulas (to which a translation from
certain natural language utterances is taken for granted), and to characterize DRT as a function from
first-order formulas to meanings. To bring out the semantic (as opposed to syntactic) character of these
meanings, DRT can be presented through a slight variant, Groenendijk and Stokhof [4)'s Dynamic Predicate
Logic (DPL), which is, in turn, based on quantified dynamic logic (see, for example, Harel [53). DPL
translates first-order formulas A to programs ADPL from dynamic logic as follows 2

ADPL = A? for atomic A

(A&B)DPL ADPL; BDPL

(3x A)DPL = x :=?; ADPL

(-A)DPL = -_ (ADPL),

where the negation -'p of a program p is the dynamic logic test checking that p cannot terminate. The
customary notation

[P 1) ?

exposes two properties of this form of negation that are not intrinsic to the concept of negation - viz., its
universal character (reflected by the square brackets in the modality [p]) and its static character (reflected
by ? - recall that a dynamic logic test A? cannot return an output state distinct from its input state, and
is, in this sense, static). The other connectives are derived as in classical logic, e.g.,

VxA = -3x-A

A DB = (&B

and accordingly inherit the universal and static properties of negation. Whereas some notion of universality
is essential to universal quantification and implication, the goal (t) above requires dynamic (as opposed to
static) forms of universal quantification and implication (so that, for instance in (**), the player introduced
by the first sentence can serve as the referent for he in the second sentence). It is simple enough to introduce
an alternative form - of negation that is neither universal nor static, by defining - as a map on a richer

2The semantic interpretation of programs irn dynamic logic is reviewed in section 1.1. The non-commutative treatment of
conjunction & below may seem odd to readers unfamiliar with discourse analysis. The intention is to capture the sequentiality
in processing discourse. The reader can, if she prefers, write A.B instead of A&B.

63

collection 4P of formulas obtained by closing predicate symbols under so-called anti-extensions, and treating

V, D and V as primitive, thereby allowing De Morgan's laws to be incorporated into -. (The map - goes

back at least to Nelson [11], and has come to be known in the literature as strong negation.) What requires
a bit more work is interpreting universal quantification and implication dynamically. That interpretation is
most conveniently presented by a translation -' of the richer collection 4> of formulas into a collection P of

programs that is correspondingly richer than the programs of dynamic logic. The crucial clauses of .'", when

compared to .DPL, are

(AVB)P = +Br

(A D B)" A' =• B`

(Vx A)" =

While programs in dynamic logic are closed under non-deterministic choice +, the program construct =; gives

rise to new programns, requiring, in fact, a higher-order extension of dynamic logic's states. That extension

can take the form either of

(i) closing the collection of states inductively under a partial function construct, whereupon the interpre-

tation of implication and universal quantification in Kleene (9] can be adapted to =.,

or, more modestly, of

(ii) extending the collection of states by a single application of the powerset construct, and then treating

a state given by a set of states as a family of processes running "conjunctively" in parallel, as in

Concurrent Dynamic Logic (Peleg [13]).

The relationship between (i) and (ii) can be explained in the framnework of labelled transition systems, on the

basis of a transformation £ that is essentially the familiar construction of a deterministic finite automaton

from a non-deterministic one (e.g., Hopcroft and Ullmnan [7]). The transformation £ will play a significant

role in our investigations; it is perhaps worth mentioning at this point that it can be employed to extract

the DRS's mentioned above from dynamic logic.

1 Background: semantics and information growth

The semantic approach taken in this work is to analyze a constraint as a binary relatio.n on states. Insofar

as the notion of a first-order formula is closer to that of a constraint, it is instructive to describe how to

translate a formula into a programn (that is then interpreted as a binary relation) if only to suggest how

such an analysis of constraints can be carried out. For the remainder of the paper, however, we will work

directly with programs, rather than first-order formulas, taking for granted the step between constraints and

programs (which afterall is subject to considerable variation; see, tor example, Fernando ?2]). In particular,

the present section considers the collection P(, of programs from quantified dynamic logic.

Let us recall briefly how programs are interpreted in dynamic logic. A signature (= vocabulary) L is

fixed, as is an L-model M and a countable set X of variables. The set S of states is then the set of functions

f,g,... from X to the universe IMI of M, and programs p E P0 are interpreted semantically as binary

relations p(p) C S x S according to

f p(x :=?) 9 iff f = g except possibly at x

f p(A?) g iff f = g and M - AJf]

p(p;p') = p(p) op(p')

p(p + p') = p(p) U p(p')

p(p*) = reflexive-transitive closure of p(p)

where x E X, A is an L-formula with free variables from X, and c is relational composition. Rather than

extending • simultaneously to modal L-formulas, it is sufficient to build in tests ({p]l)? through another
primitive operation - on which to close Pc', with

f p(-,p) g iff f = g and there is no h s.t. f p(p) h

64

Now, an obvious way of formulating the monotonicity of information change is to assert that whenever
the binary relation interpreting a program relates an input state s to an output state t, then s C t, for some
pre-order _ (marking information growth) on states. As (quantified) dynamic logic supports two kinds of
atomic programs (viz., random assignments and tests), information can grow along two different dimensions,
that we presently take up in turn. In each case, it will prove useful to modify the set S of states described
above, passing from the semantic function p to a function 1-1 on which for all (modified) states s and t,

s Lp]t implies s :t. (I)

1.1 Introducing variables with existential force: expansive growth

At any given point in a computation, of which dynamic logic provides an abstraction, only finitely many
variables are initialized. Moreover, there is a clear sense that executing a random assignment x :=? at a point
in which z is not yet defined "adds" information to the computational state. In fact, in relating dynamic
logic to the construction of first-order contexts, it is natural to work with states defined only on finitely
many variables (as argued in Fernando [1], appealing, for instance, to Henkin witnesses and back and forth
constructions). Accordingly, in place of S, let us consider the set So of valuations

S0 = {s I s is a function from a finite subset of X to IMI}

partially ordered by the subfunction (i.e., subset) relation C, and replace the semantic function p on PF by
a function H[given in the same inductive fashion as p except that S is replaced by So and

S "X:= t iff xE dom(t) and s = t except possibly at x

Observe that monotonicity is (of course) not guaranteed: if an input state s is already defined on x, then
x :=? can destroy that binding and spoil (1). But it is simple enough to "guard" all random assignments,
by replacing x :=? by the guarded assignment x := * that assigns a value to x precisely when initially x is
unbound (doing nothing otherwise)

x=x? + -((x=x?); x:=?

(i.e., if not x I then x :=?). A translation of first-order formulas into programs, all of whose random
assignments are guarded, can be constructed by resorting to "marked" and "unmarked" variables (Fernando
[2]). In that situation, it is easy to see that (1) holds.

1.2 Imposing constraints on variables: eliminative growth and £

To bring out the information a test A? contributes, it is useful to pass to a more complex notion of a state,
embodying an additional dimension of partiality on which tests act. It will turn out to be convenient to
be slightly abstract on this point, and to isolate the notion of a so-called (L-)transition system - i.e., a

triple (S, {f}1}EL, SO) where S is a non-empty set of states, - C S x S for every I E L, and so E S is
an initial state. Observe that the structure (So, {[p0o}jp,,'O) is an instance of a P0-transition system, the
initial state 0 being C-minimal. Next, consider the following fairly standard transformation on transition
systems (coinciding with the construction of a deterministic finite automation from a non-deterministic one;

e.g., Hopcroft and Ullman [7]). Given a transition system S = (S, fLI ELso), define for every I E L, a

ternary relation • on sets a, b of S-states as follows

a= I b iff b = {t E S I 3s E a s -. t}.

Now form the transition system L(S) by

(i) defining its set £(S) of states inductively by

a___ aEL(S) a J*b b$00

{so,}l E(S) b E L(S)

65

(ii) interpreting every I E L by the binary relation • restricted to £(S), and

(iii) endowing £(S) the initial state Iso}.

(The reason for restricting the states of C(S) to this subcollection of Power(S) will become clear later.) If
the relevant pre-order for S is C, then the "natural" pre-order on £(S) is the so-called Smyth pre-order ECs,,
given by

aCs,,b iff (VtEb)(3sEa)sCt.

Note that if C is =, then r s,m is simply ;?, marking a growth of information that can be said to be
"eliminative" (as opposed to the "expansive" growth described in section 1.1, where C is C).

Accompanying the abstract notion of a transition system is that of a bisimulation (Park [12)). A relation

R C S x 5' is a bisimulation between transition systems (S, {f }EL, So) and ('•, , }IEL, s(,) if it satisfies
the "back-and-forth" condition that whenever sRs', then for every I E L,

(Vt 4-s) (3t --' s') tRl' and (Vt' 4-'s') (3t t s) tRt'

(5, {•L}tEL, so) and (S', {--}IEL, s',) are said to be bisimilar if there is a bisimulation between them relating
(S f IL 0 and (S' guaanse

the initial states so and si,. Bisimilarity - is the largest bisimulation relating so and so, and is guaranteed

to exist when (S, {f }EL, SO) = (S', {---'}EL, 'o). Although the notion of bisimilarity can (in general) be
quite complex, observe that under the translation L, it is not. More precisely,

C(S, fLIEL, SO) ±- £(S', {I' }IEL, St,)

iff for all I E L,

(3sES) sO--s iff (Bs'ES')s0- s .

Now, returning to the transition system IMJ0 = (SV, {f M [PI}',E,, 0) constructed in section 1.1 from a first-
order model M (fixed in the background, and normally suppressed notationally), the following points spelled
out in Fernando [1] are relevant. Whereas over countable models M and NA

[M]o0 -= [Nj] iff M c- N

iff AM]0 5 [N]o,

applying £ abstracts away some of the dependence on the first-order model. In particular, if P' is the set
of programs in P0 without an occurrence of Kleene star .*, and if JMI' is the P'-transition system obtained
from restricting the label set of EM]o to P', then

(i) whether or not M and N are countable,

£ýM]'j= £([Nj' iff M AN (i.e., M and N satisfy the same first-order sentences)

iff£C[Mj' t £I[NJ]'

and

(ii) as suggested by the last equivalence, £LM]' can (up to 2) be constructed syntactically relative to the
first-orde! ýheory of M, based on what are essentially the DRS's we met earlier in the introduction.

The logical significance of the transformation £ will be brought out further below.

66

2 Introducing variables with universal force

The DPL interpretation of implication p D q = -'(p; -9q) yields the following binary relation on S0

syp D q]o(t iff t s and (Vs' s.t. s[p]os') (3t') s'[qJct'.

As any number of s"s might be accessible from s via Lp0, any number of t"s may be involved above.
Accoidingly, the interpretation above is static - which is to say, the input and output states s and t must
be the same. The culprit is the non-determinism of [p]0', which suggests a "dual" notion of parallelism, as will
come as no surprise to readers familiar with so-called and-or computations (see Peleg [13] and the references
cited therein). This dual notion will be introduced, however, not by some conjunction construct, but by
an "implication" =* between programs. More precisely, let us extend our old collection P0I of programs by
forming a collection P1 of programs closed under the same constructs as P0 and, in addition, a new primitive
binary construct =;:

p E Pi q E Pi

(p '-q) EP

2.1 A functional interpretation of implication

Borrowing an idea from Kleene [9] (but then stripping away its "constructive" character), let us witness the
V3-clause in s•p D qJ(,t by a (plain set-theoretic) function f to obtain

s[p *= q]t iff t = (s, f) and f is a function with domain {s' I s[ýpjs'
s.t. (Vs' E dora(f)) s'iqlf (s') . (2)

Notice that in the right hand side, it is important to store s in t in case there is no s' for which s5p]s'. On the
other hand, if there is an s' for which s[pIs', then, further on, we might ignore s when imposing conditions
on, for instance, the state(s) u for which (s, f)[A?Ju. (This is particularly plausible if information always
increases in the sense of (1), in which case s is subsumed by f(s'), for every s' E dom(f).) So rather than
adopting (2), let us draw the states from the (inductive) closure S_ of S1 under partial functions3

sES.._ iff sES(, or (3dCS-)(3cCS.CS) sisafunctionfromdtoc,

and define for s, t E S_,

s0p • q~t iff (t is a function with non-empty domain {s' I s[p]s'}

and (Vs' E dora(t)) s'JqJt(s'))

or (t = s and there is no s' s.t. s•]s') . (3)

The intuition behind p =• q then is that every process resulting from p must execute q. To preserve the
"conjunctive" character of the processes so spawned, extend the semantics [ipj of a random assignment or
test p by requiring inductively that for s E S-_ - S, and t E S-,

s~plt iff dom(s) = dom(t) and (Vs' E dom(s)) s(s')&p]t(s'). (4)

The remaining clauses for sIpjt can then be asserted uniformly over all s, t E S_.. (That is, ; is still interpreted
as o, + as U, and ." as reflexive-transitive closure.) Observe that -'p amounts semantically to p =:- I (where
E11 = 0), thence p D q can be derived from =ý, I and ;. Also, Vx p can be equated with (x :=?) => p.

Proposition 1. The monotonicity postulated by (1) can be secured for s, t E S_ and every p E P1 in which
all random assignments are guarded, by defining C_ on S_ inductively from C by

s C_ t iff (s and t are valuations and s C t) or

(t is a function on states and (Vt' E doni(t)) s C_ t(t')) or

(s and t are functions on states with the same domain d and

(Vs' E d) s(s') E t(s'))

which is evidently transitive.
3 The class S_ is introduced only for notational convenience, to describe the form of the states needed; it will be replaced

by a set S, shortly.

67

2.2 Reducing the higher-order interpretation (enter £ once again)

Working out what the extension above from S0 to S_. means brings to mind a remark by G. Kreisel:

Until the mid fifties, I found this subject [intuitionistic logic] distasteful because ... iterated
implications made my head spin. They continue to do so, and the same is true of functions of all
finite types.

(Kreisel [10], p. 397). To keep matters from getting out of hand, it is useful to cut down functional states
s, observing that "all that really matters" in s is its image, which is treated "conjunctively" in (4). Making
these points precise is what this section is all about.

For every p E P1, let lJpj g S_. X S_ be the interpretation of p given in section 2.1, and let S, be the
set consisting of all objects in S_. accessible from the empty valuation by interpretations of programs p E Pi

S, (0} U (s I 3p E PI @[p]1ss}

Our task is to "reduce" (SI, E.-1, 0) to a more "tractable" transition system (S 2 , [1'2, s0) such that

(A) the "essential structure" of (SI, [H]1,0) is retained in (S2 , ['12, SO)

and

(B) the interpretation [']2 can be understood independently of E'11 (i.e., the meaning [PJ2 of p is intrinsic
to S2).

A notion relevant to (A) is that of a bisimulation, suggesting as a natural candidate for (S2, [1'2, SO) the
transition system obtained by dividing (S1 , [''1, 0) by the largest bisimulation on (SI, [.'1, 0), call it ,-.
Unfortunately, it is not at all clear that this "reduced" structure is conceptually more tractable. It is true
enough that desideratum (A) is met, but as for (B), saying simply that the new states are equivalence classes
only worsens matters. What is needed is a helpful characterization of -, but, already over SO, distinct
valuations may be related by =-, depending on the degree of homogeneity of the underlying first-order model
M (Fernando [i]).

Focusing instead on the structural complexity introduced by •, consider the "image-collapse" of [']
to the state set

S2 = So U Power(So)

induced by the reduction R of functions in S to their (hereditary) images in S2 . That is to say, let R be
the least fixed point of

s1 Rs 2 iff (sI = S2 E SO) or
((3d C SI) (3c C S1) s, is a function from d onto c s.t.

c =(So) ulU{t I3s E c - So sRt})

where the first disjunct represents the base case, and the second disjunct represents the inductive (hereditary
image) case (justified intuitively by the associativity of conjunction, and broken down similarly into two
subcases). Define ['12 9 S2 x S 2 by

s[p] 2t iff (3sl,ti E SI) spJ1 t, and s1 Rs and tiRt. (5)

Is R a bisimulation between (SI, [.11,0) and (A2 , H12,•)? To prove this, it would help if the choice of the
representatives si and t, in the right hand side of (5) is inessential. Turning to clause (4), it is helpful to
think of s(s') and t(s') as processes spawned by s' at successive stages s and t of the construction. Another
s" E dom(s) (= dom(t)) can spawn the same process at s - i.e., s(s') = s(s") - or, for that matter, at

t, independently of s, so long as the link to dom(s) is maintained. But that link is severed by R, in the

68

aftermath of which, (4) might (following desideratum (B)) be replaced by the condition that for s E S2 - S(,,

t E S2 , and a random assignment or test p,

SEPJ 2t iff 3 function f mapping s onto t s.t. (Vs' E s) s'[pJof(s'). (6)

But the problem with (6) is that once s' and s" beget a (common) child - i.e., once s fails to be 1-1 -,
they will be committed to live as one onwards - i.e., t can never be 1-1 (contrary to what is possible in
[.j'). On the other hand, neither

s[P2t iff (Vs' E s) (3t' E t) s'jplot' (7)

nor

S[p]2t iff (Vs' E s) (3t' E t) s'[piot and (Vt' E t) (3s' E s) s[]pot' (8)

will do, as both permit s' multiple offspring, allowing Itf > Is[even if s is the image of a 1-1 function. (Under
(6), one slip and "till death do you part", no divorce permitted. Without the true moral grounding of (4),
a promiscuous ontology arises from (7) or (8), a Puritan one from (6).)

Simplifying [I' would seem to be no simple matter. Proceeding from desideratum (B), instead of
adopting (5), characterize E-]2 _ S2 x S2 independently of [], by replacing (3) by

sýp = qJ2 t iff (3 function f with non-empty domain {s' I sNp 2s')} s.t.

(Vs' E dom(f)) s'Jq12f(s') and

t = {t' E S,, I 3s' f(s') = t'} U U{t' C S. I3s' f(s') = t'})

or (t = s and there is no s' s.t. sp2s') I

Furthermore, for a random assignment or test p- replace (4) by any of the pairwise non-equivalent clauses
(6), (7) or (8) for s E S2 - S0 and t E S2. (The remaining compound programs are then interpreted as before
- i.e., ; by o, etc.) It is not difficult to show that in the transition system given by (6), 52 can be simplified
to Power(S0l) by a bisimulation relating the valuation s to {s}. (Or, going the other direction, under (6),

MP2 may be redefined more simply as a subset of So x Power(S(0); see the discussion of Peleg r13] in section
2.3.) But the larger question is

(•) how are [.J1 and the four non-equivalent definitions

of [..J2 (given by (5), (6), (7) and (8)) related?

An answer is provided by the transformation C defined in section 1.2. Observe that L(S) internalizes the
non-determinism of S into C(S)-states, over which the I-transitions (for every I E L) then (externally)

become deterministic (i.e., partial functions). An C(S)-state a is a "disjunctive" set in that a can make a
transition so long as some S-state in a can. (Recall that C(S)-states are required to be non-empty.) By
contrast, an S2 -state is a "conjunctive" set insofar as, under (5), (6), (7) or (8), every valuation in the set
must survive in order for the state to survive. Now, returning to (M),
Theorem 2. For each of the four definitions of E-12 given above,

That is, for all programs p E P1,

(3sf E Si) 0][pisi if (3s 2 E S 2) @1P12s2 • (9)

Proof (sketch). The idea, roughly put, is to show that it is sufficient to consider only C-minimal conjunctive
sets (- in Si, functions with C-minimal images -) ind -. by =:, which are the same for all variants of

'12. That is, the two instances of existential quantific: (9) can be restricted to So and higher-order
states representing minimal families of processes spawn,

Remarks.

69

(i) The bisimilarity asserted by the theorem cannot be improved to an isomorphism

1C(s,,[.]1,,• _5 1C(s2,[-12,@) ,

as can be seen from considering the programs x := 0 =o x := 0 and z :=? x' z := 0 (where z := 0 is,
as usual, x :=?; x = 0?). Whether or not an isomorphism holds, modulo C, between specific variants
of [112, we leave as open.

(ii) It is instructive to recall (from section 1.2) that applying the transformation £ on the P0-transition
system (So, {p(p)},Ep., 0) underlying quantified dynamic logic leads to an analysis of constraints that is
"syntactic" insofar as the DRS's mentioned in the introduction are syntactic. This raises the following
problem (a solution to which has so far eluded the present author): give a natural characterization
of a DRS for the higher-order extension above. (The fact that bisimilarity in Theorem 2 cannot be
strengthened to a suggests that the matter can be quite delicate.)

(iii) In view of the abovementioned "conjunctive" and "disjunctive" character of ['12 and £, respectively,
the thrust of the theorem can be described as a reduction to a "disjunctive normal form" (licensed
by classical, but not intuitionistic, logic). At the heart of the higher-order witnesses introduced in
section 2.1 are and/or computations, such as those underlying Concurrent Dynamic Logic (Peleg [13)),
to which we turn next.

2.3 Comparison with conjunctive parallelism in Concurrent Dynamic Logic

Without going into the gory details, let us pause to relate the binary construct :* to the binary conjunction
construct n introduced in Peleg [13) to capture a "conjunctive" notion of parallelism, dual to the "disjunctive"
non-deterministic construct +. The pair t = (s, f) in (2) yields, after replacing f (hereditarily) by its image,
an instance of Peleg's reachability pairs, sets of which are used to interpret programs. More precisely, the
old semantic interpretation function p reviewed in section 1 is lifted to a function from (the richer collection
of) programs to subsets of S x Power(S) accordi'ing, for instance, to

f p(x :=?) U iff U = {g} for some g E S s.t. f = 9 except possibly at x

f p(A?) U iff U = {f} and M • A~f]

f p(p; p') U iff (3U') f p(p) U' and

3 function F with domain W' s.t.

(V9 E U') g p(p) F(9) and
U = U{F(g) I g E U'}

f p(pfl. iff (3BVW) f p(p) V and p(p') W and U = VU W

Setting aside t'ie difference between total functions in S and finite functions in S0l, the function p can be
compared more readily to the variants of [J12 by lifting p(p) further to a "left-distributive" binary relation
on Power(S): for non-empty s C 5, postulate

s p(p) t iff there is a function F with domain s such that

(Vs' E s) s' p(p) F(s') and t = U{F(s') I s' E s}

The clause for p(p;p') above then comes closest to the variant of ['12 given by (6). Turning to P2 and ['12,
the construct * yields a notion of conjunction

p& = (--p) ; (p = skip)

(where -'-,p serves to ensure that some transition through p is possible, and skip is a test that always
succeeds), from which => can be reconstructed, with the help of -

p =o q = p&; q + -p .

The construct .& differs from n not so much in being unary (- one can resort, afterall, to (---p); (--9q); (p+
q)& -), but in being "unbounded" insofar as p& 2 p n p nf

70

3 Discussion: back to constraint programming

As has already been pointed out (in footnote 1), the notions of quantification and parallelism above differ
in essential ways from the notions in Saraswat [14]. Extending the system above further with constructs for
locality ("hiding") and communication are obvious next steps, although some (common) motivation might
be helpful for considering these various notions alongside each other. Otherwise, it may be simplest (and
most advisable) to study these notions separately, to avoid confusing the different reasons for which they are
of interest. (The program construct =• above was introduced, for instance, to overcome a specific linguistic
problem raised in Groenendijk and Stokhof [4],)

Viewing the situation from a purely logical point of view, however, let us observe in closing that the
extension above is not so much constructive as it is higher-order - departing, as it does, from the constructive
spirit of Kleene [9] by imposing neither recursion-theoretic nor proof-theoretic conditions on witnessing V3.
Of course, if the underlying first-order model is finite, then all the transition relations would be mechanically
computable. Otherwise, the "effective" nature of * (i.e., =*'s claim to being a program construct) becomes
problematic, in that over say, the standard first-order model of arithmetic, it gives rise to transition relations
that are not r.e. (This is true already for -', which can be defined as. = _L.) Returning to Saraswat [14], one
solution would be to approximate =: through interleaving and hiding constructs that keep the transitions r.e.
That is, the "true concurrency" in the notion above of a variable with universal force might be reduced to
interleaving processes with local variables. A first step in that direction would be to sort out the relationship
between dynamic logic and process semantics given by so-called labelled transition systems (for which, see
Fernando [3]).

References
[1] Tim Fernando. Transition systems and dynamic semantics. In D. Pearce and G. Wagner, editors, Logics in AI,

LNCS 633 (subseries LNAI). Springer-Verlag, Berlin, 1992. A slightly corrected version has appeared as CWI
Report CS-R9217, June 1992.

[2j Tim Fernando. The donkey strikes back. In Proc. of the 6th Conference of the European Chapter of the
Association for Computational Linguistics, to appear.

[31 Tim Fernando. Comparative transition system semantics. In E. Borger et al., editors, Computer Science Logic:

Selected Papers from CSL '92. Springer-Verlag, Berlin, to appear.

[4] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14, 1991.

[5] David Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Volume
2. D. Reidel, 1984.

[6] Irene Heim. The semantics of definite and indefinite noun phrases. Dissertation, University of Massachusetts,
Amherst, 1982.

[7] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley,
1979.

[8] J.A.W. Kamp. A theory of truth and semantic representation. In J. Groenendijk et. al., editors, Formal Methods
in the Study of Language. Mathematical Centre Tracts 135, Amsterdam, 1981.

19] S.C. Kleene. On the interpretation of intuitionistic number theory. J. Symbolic Logic, 10, 1945.

110] Georg Kreisel. Proof theory: some personal recollections. In G. Takeuti, Proof Theory (second edition). North-
Holland, Amsterdam, 1987.

[11] David Nelson. Constructible falsity. J. Symbolic Logic, 14, 1949.

[12] David Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Proc. 5th GI Conference,
LNCS 104. Springer-Verlag, Berlin, 1981.

[13] David Peleg. Concurrent dynamic logic. J. Assoc. Computing Machinery, 34(2), 1987.

[14] Vijay A. Saraswat. Concurrent Constraint Programming Languages. Dissertation, Carnegie-Mellon University,
1989, Published by the MIT Press.

71

A Disjunctive Decomposition Control Schema
for Constraint Satisfaction*

Eugene C. Freuder
Paul D. Hubbe

Department of Computer Science
University of New Hampshire
Durham, NH 03824, U.S.A.

ecf@cs.unh.edu
pdh@cs.unh.edu

Abstract

The paper presents a control schema for constraint satisfaction. Several algorithms, old and new, are
formulated as instances of this schema by specifying different methods of problem decomposition. This
formulation facilitates description and comparison of the algorithms and suggests directions for further research.
A new decomposition method is presented that is virtually guaranteed to reduce problem size, while always
retaining at leat one of the solutions to the original problem.

1 Introduction

A solution to a constraint satisfaction problem (CSP) is an assignment of a value to each problem variable
that satisfies all the constraints, or restrictions, on which combinations of variables are permitted. We will focus
here on binary CSPs where the constraints involve two variables. The potential values for a variable constitute its
domain. We will assume finite domains.

We propose a disjunctive divide and conquer control schema for constraint satisfaction. The schema encompasses
a wide variety of specific algorithms, including a new one presented here. It facilitates presentation and comparative
analysis of these algorithms and suggests new algorithmic possibilities. In particular, the problem decomposition
offers new opportunities for ordered search in a space of alternative problems, and for parallel and distributed
processing. A specific new decomposition technique is presented that is virtually guaranteed to reduce the number of
possible solutions, i.e. the number of different ways to assign a value to each variable, while always retaining at
least one of the actual solutions to the original problem.

Our basic CSP algorithm schema can be stated very simply:

Decomposition Algorithm Schema:
Place the initial problem on the Agenda
Until Agenda empty:

Remove a problem P from Agenda
If P has only instantiated variables

then Exit with their values
else

Decompose Pinto a set of subproblems IPi)

Place each non-empty Pi onto the Agenda

Exit with no solution

This material is based upon work supported by the National Science Foundation under Grant No. IRI-9207633.

72

Initially all variables ae aninstaniated: the decomposition methods mark variables as instantiated. Intuitively,
the instantiated variables are the variables for which we have chosen values. Upon exit the cross product of the
instantiated variable domains is the set of reported solutions. (This is not necessarily all the solutions, but some of
our algorithms will naturally find sets of solutions even while searching for a first solution.) A problem is empty if
my of its domains is empty.

We impose the following three conditions on I Pi):

1. Soundness: Any solution to any Pi is a solution to P.

2. Termination: Each of the IPi I is smaller than P. (Problem size can be measured as the product of the

domain sizes for each variable, i.e. the number of combinations of values that could be generated as potential
solutions.)

3. Semi-completeness: If there is a solution to P, thtn there will be a solution to at least one of the |Pi).

This disjunctive decomposition breaks a problem into subproblems in a manner that guarantees that the
decomposition algorithm schema will produce a solution to solvable problems and terminate without a solution
when none exists. Notice that if we are only looking for one solution, we do not need to require that every solution
to P will be a solution to some Pi. (Conjunctive decompositions break a problem into subproblems such that all

the subproblems must be solved, and the solutions must fit together properly, for the original problem to be solved.)
This schema immediately suggests two avenues of exploration:

1. How is the decomposition performed?
2. How is the agenda organized?

Different answers to these questions produce a family of divergent algorithms.
Notice that if the agenda is maintained as a stack we have a form of depth-first search, which does not need to

present a serious space problem. Stack size requirements are O(nD), for n variables and a maximum of D problems
in any decomposition (Pi}. (In fact if we represent all but the first component as a continuation, generating the

individual subproblems as needed, stack size can be reduced to O(n).) On the other hand, if we are more flexible in
the agenda ordering, it permits opportunities for heuristic ordering that may save processing time. (If ordering is
limited to ordering a set JPi} before placing it on the agenda, stack size requirements can still be O(nD).)

All of our examples will assume a stack organization for the agenda. However, that still leaves open questions
about which problems to place next on the stack, and in what order.

We will indicate how versions of five specific algorithms can be formulated using this schema:

1. backtracking (1T) [Golumb and Baumert, 1965]: We use this basic algorithm to introduce the schema.

2. forward checking (FC) [Haralick and Elliott, 1980]: This is one of the most successful CSP techniques. The
effective minimal domain size variable ordering [Haralick and Elliott, 1980] is naturally incorporated as a
decomposition decision.

3. network consistency (NC) [Mackworth, 1977]: This algorithm explicitly operated in a recursive divide and
conquer form, alternating local consistency processing with variable domain splitting. The schema formulation helps
suggest a variety of NC variations to explore, and clarifies the relationship between NC and FC.

4. backtracking with cross product representation (BT-CPR) [Hubbe and Freuder, 1992]: The schema
formulation, similar to that used in the original presentation of the algorithm, facilitates viewing backtracking as a
degenerate case of backtracking with CPR. This in turn facilitates the demonstration that adding CPR can not
increase the number of constraint checks (a standard measure of CSP algorithm performance) when searching for all
solutions (and may reduce the number of checks significantly). A similar formulation is possible for forward
checking with CPR.

73

5. inferred disjunctive constraints (IDC) [Freuder and Hubbe, to apear]: The new IDC algorithm was explicitly
intended as a decomposition algorithm. It takes advantage of the fact that some solutions may be thrown away in the
search for a single solution. The comparison with forward checking that the schema facilitates provides insight into
the effective use of this technique. The technique can be shown to virtually always reduce problem size, i.e. the sum
of the sizes of the subproblems will virtually always be less than the size of the decomposed problem.

Decomposition methods can be combined. DX incorporates aspects of PC. An algorithm that uses heuristics to
alternatively choose between FC and IDC decomposition during search has proven superior to either IDC or FC
alone (testing all three with minimal domain size variable ordering) on some very hard problems [Freuder and Hubbe,
0 appear].

In the following five sections we specify the decomposition techniques that effectively define each of the five
basic algorithms listed above. Plugging each decomposition technique into the decomposition schema produces a
version of one of the algorithms. In each case we specify the decomposition abstractly and then illustre it with a
simple example. Section 7 discusses some theoretical aspects of the efficacy and efficiency of these algorithms. The
final section proposes some directions for further work.

The abstract decomposition descriptions will refer to a decomposed problem, P, with n variables. Each of the
subproblems in the decomposition will be specified by describing how to construct them from P. The subproblems
are to placed on the decomposition schema's stack so that they reside on the stack in the same order as they are
specified. We will often refer to the "first" uninstantiated variable, or the "first" value in a domain, assuming the
variables and values are stored in some order. We specify "first" rather than "any" in order to present a more specific
algorithm, rather than another schema, parameterized around the method of variable and value choice. However, we
could also impose a heuristic variable or value search ordering scheme to choose the variables or values (or provide
their initial ordering), and such schemes are of considerable interest.

We will use as an example a simple coloring problem. The variables are countries, the values are colors, the
constraints specify that neighboring countries cannot have the same color. We will have four countries (variables):
W. X, Y and Z. Each country has three possible colors (values): r(ed), b(lue), and g(reen). The countries are arranged
in a "ring": W neighbors X, X neighbors Y, Y neighbors Z and Z neighbors W.

Coloring problems and subproblems will be represented by listing the domains for W, X, Y and Z in order.
Thus the original problem can be represented:

rbg
rbg
rbg
rbg

The domains of instantiated variables will be represented in italics. We will carry out the decomposition depth-
first until a solution is found. We will show all the non-empty sibling subproblems for each decomposition, even
though in practice we need not generate all siblings at once. Empty subproblems will not be shown.

This example is purposely trivial for pedagogical purposes. It is not intended to illustrate the relative merits of
the different algorithms. However, it may provide some insight into their potential, as well as their operation.

74

2 Backtracking

Decomposition:

I. The istsandamed subproblem.
Mark the first uninstntiaetd variable, V, instantiated. Make its domain the first value, v, in the domain of V. If

v is inconsistent with any of the (single) values in the domains of any of the previously instantiated variables, also
remove v from the domain of V, leaving the instantiated problem empty (to be discarded by the algorithm schema).

2. The remainder subproblem.
Remove the value v from the domain of V.

Example: (Remember that we are not showing empty subproblems.)

rbg
rbg
rbg
rbg

r bg
rbg rbg
rbg rbg
rbg rbg

r
bg
rbg
rbg

r r
b g
rbg rbg
rbg rbg

r r
b b
r bg
rbg rbg

r
b
r
bg

r r
b b
r r
b g

75

3 Forward Checking

Decomposition:

1. The precluded subproblem.
Mark the frst uninstantiated variable, V. instantiated. Make its domain the first value, v, in the domain of V.

Remove values inconsistent with v from the domains of the remaining uninstantiated variables. As an obvious non-
stmdadd refnement, if there is only one uninstantiated variable, it too can be marked instantiated.

2. The remainder subproblem.
Remove the value v from the domain of V. (Same as in the backtracking decomposition.)

Example:

rbg
rbg
rbg
rbg

r bg
bg rbg
rbg rbg
bg rbg

I\

r r
b g
rg rbg
bg bg

r r
b b
r g
bg bg

76

4 Network Consistency

Decomposition:

1. The first divided subproblem.
Remove half the values from the domain of the first uninstantiated variable, V. Subject the subproblem to arc

consistency processing, which may further reduce variable domains. Finally, mark any variables with single value
domains instantiated. and if there is only one uninstantiated variable, mark it instantiated also.

2. The second divided subproblem.
Remove from the domain of V the values in the domain of V in the first divided subproblem. As with the first

divided subproblem: Subject the subproblem to arc consistency processing, which may further reduce variable
domains. Finally. mark any variables with single value domains instantiated, and if there if only one uninstantiated
variable, mark it instantiated also.

(Note that in employing this decomposition in the decomposition algorithm schema the arc consistency

processing does not actually have to be done until we take the subproblem off the agenda.)

Example:

rbg
rbg
rbg
rbg

r bg
bg rbg
rbg rbg
bg rbg

r r
b g
rg rb
bg bg

r r
b b
r g
bg b

77

5 Backtracking With Cross Product Representation

Decomposition:

The CPR subproblems.
a. Split: For each value v in the first uninstantiated variable, V, create a subproblem where the domain of V is

restricted to v, and the domains of each instantiated variable are restricted to those values consistent with v.
b. Merge: If any set of subproblems differ only in the domain of V. merge them into a single subproblem where

the domain of V is the union of all their individual V domains (and the other domains are the same as they are in
each of these subproblems).

Mark V instantiated in each subproblem.

Example:

rbg
rbg
ibg
rbg

I
rbg
rbg
rbg
r b

bg rg rb
r b g
rbg rbg rbg
rbg rbg rbg

I

bg
r
bg
rbg

bg g b
r r r
bg g b
r b g

78

6 Inferred Disjunctive Constraint

Decomposition:

I. The precluded subproblem.
Mark the first uninstantiated variable, V 1. instantiated. Make its domain the first value, v. in the domain of V 1.

Remove values inconsistent with v from the domains of the remaining uninstantiated variables. If there is only one
uninstantiated variable, it too can be marked instantiated. (Same as in the forward checking decomposition.)

2. The excised subproblems.
For each remaining uninstantiated variable Vi, i = 2 to n, create a subproblem by removing v from the domain

of V I, removing any values inconsistent with v from the domains of V2 through Vi- I and removing any values
consistent with v from the domain of Vi. (Note any variables that do not share a constraint with VI will
automatically lead to empty subproblems.)

Example:

rbg
rbg
rbg
rbg

r bg bg
bg r bg
rbg rbg rbg
bg rbg r

r r
b g
rg b
bg bg

r
b
r
b7

79

7 Theory

All of these decompositions meet the three conditions laid out in the first section, and thus when the
decomposition algorithm schema uses them it will terminate and find a solution to solvable problems. Only the IDC
decomposition takes advantage of the fact that some solutions can be thrown away as long as not all are thrown
away. The others do not throw away any solutions, and thus if the algorithms employing these decompositions
continue to explore the search space after finding solutions ("pretending" to fail) they will find all solutions.

CPR, a relatively new decomposition, is based on the insight that sets of incomplete solutions may be
represented and efficiently processed in a cross product representation. It is proven analytically in [IHubbe and Freuder,
19921 that BT-CPR never requires more constraint checks than BT, when searching for all solutions, or proving that
none exist. A similar result is obtained for CPR in conjunction with FC.

The new decomposition, IDC, is based on the hypothesis that, if P is solvable, either there will be a solution
involving v for V. or there will be a solution involving a value inconsistent with v. It is proven in [Freuder and
Hubbe, to appear] that:

1. IDC will find a solution if one exists. It may throw away some solutions, but often we are only looking for
one anyway.

2. The size of the IDC decomposition (the sum of the sizes of the subproblems) will always be smaller than the
size of the decomposed problem (except in the degenerate case when the instantiated value is the only value in its
domain, and all other values are consistent with it). None of the other decomposition schemes can make such a
strong reduction claim.

3. The size of the IDC decomposition will always be less than the size of the FC decomposition by an amount
equal to the size of the consistent subproblem. If v is the value in the domain of the first variable, V. in the
precluded subproblem, the consistent subproblem is formed from the decomposed problem by removing v from the
domain of V and removing from all other domains any value inconsistent with v.

This theoretical analysis of IDC is facilitated by another decomposition process. We will describe this process
and then present an example, again using our coloring problem. (The forward checking decomposition in the
example is shown in the reverse order to that shown in Section 3.) Compare the leaves of the tree in the example
with the first decomposition in Section 6.

Description:

First carry out a forward checking decomposition. Call the variable instantiated in the precluded subproblem V
and the value in its domain v. Now decompose the remainder problem into two subproblems using a variation of the
NC decomposition: divide the domain of the variable after V, not in half, but into two pieces, one containing all
values inconsistent with v, the other containing all the values consistent with v. Repeat this NC-like decomposition
process on the second subproblem, the one containing the consistent values, dividing the domain of the next variable
into two pieces. Continue in this manner until all domains have been so divided. The leaves of the resulting
decomposition tree will be the subproblems of the IDC decomposition plus the consistent subproblem. Now observe
that given any solution to the consistent subproblem we can substitute v for the value of the first variable and still
have a solution.

80

Example:

rbg
rbg
rbg
rbg

bg r
rbg bg
rbg rbg
rbg bg

bg bg
bg r
rbg rbg
rbg rbg

I
bg
rbg
rbg
rbg

bg bg
b g b g

rbg rbg
bg r

8 Further Work

Viewing these algorithms as instances of the decomposition schema helps us to compare them, and suggests
new variations. For example, if we alter NC to subdivide a domain of d values into d pieces instead of 2 pieces, and
reduce the amount of arc consistency processing appropriately, we arrive at forward checking. Is there another way to
subdivide the domain that outperforms both algorithms for an interesting class of problems?

Ordering heuristics for subproblem consideration provide a new avenue to explore. We can view ourselves as
searching in a metalevel "subproblem space". This subproblem space obviously lends itself to distributed and parallel
processing, especially given the disjunctive nature of our decompositions. Sophisticated constraint languages may
someday mix and match decomposition techniques as most appropriate for the problem at hand. Most intriguing of
all is the possibility that useful new forms of decomposition are waiting to be discovered.

References

[Freuder and Hubbe, to appear] E. Freuder and P. Hubbe. Using inferred disjunctive constraints to decompose
constraint satisfaction problems. Proceedings of the Thirteenth IJCAJ.

[Golumb and Baumert, 1965] S. Golumb and L. Baumert. Backtrack programming. JACM 12. 516-524.
[Haralick and Elliott, 1980] R. Haralick and G. Elliott. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence 14. 263-313.
[Hubbe and Freuder, 19921 P. Hubbe and E. Freuder. An efficient cross product representation of the constraint

satisfaction problem search space. Proceedings of the Tenth National Conference on Artificial Intelligence.
421-427.

[Mackworth, 19771 A. Mackworth. On reading sketch maps. Proceedings of the Fifth IJCAI. 598-606.

81

Terminological Reasoning with Constraint Handling Rules

Thom Friihwirth' Philipp Hanschket

ECRC, Arabellastrasse 17 DFK1, Postfach 2080
D-W-8000 Munich 81, Germany D-W-6750 Kaiserslautern, Germany

thomC@ecrc.de hanschke@dfki.uni-kl.de

Abstract

Constraint handling rules (CH rules) are a flexible means to implement 'user-defined' constraints
on top of existing host languages (like Prolog and Lisp). Recently, M. Schmidt-SchauB and G. Smolka
proposed a new methodology for constructing sound and complete inference algorithms for terminological
knowledge representation formalisms in the tradition of KL-ON'E. We propose CH rules as a flexible
implementation language for the consistency test of assertions, which is the basis for all terminological
reasoning services.

The implementation results in a natural combination of three layers: (i) a constraint layer that reasons
in well-understood domains such as rationals or finite domains. (ii) a terminological layer providing a
tailored, validated vocabulary on which (iii) the application layer can rely. The flexibility of the approach
will be illustrated by extending the formalism, its implementation and an application example (solving
configuration problems) with attributes, a new quantifier and concrete domains.

1 Introduction

Constraint logic programming (CLP) [JaLa87, Sar89, HS90, Coh90. VH91] combines the advantages of logic
programming and constraint solving. In logic programming. problems are stated in a declarative way using
rules to define relations (predicates). Problems are solved by the built-in logic programming engine (LPE)
using backtrack search. In constraint solving, efficient special-purpose algorithms are used to solve problems
involving distinguished relations referred to as constraints. Constraint solving is usually 'hard-wired' in a
built-in constraint solver (CS). While efficient, this approach makes it hard to extend or specialize a given
CS, combine it with other CS's or build a CS over a new domain.

Constraint handling rules (CH rules) [Fru92] are a language extension providing the user (application-
programmer) with a declarative and flexible means to introduce user-defined constraints (in addition to
built-in constraints of the underlying host language). In this paper the host language is Prolog, a ULP
language with equality over Herbrand terms as built-in constraint. CH rules define simplification of and
propagation over user-defined constraints. Simplification replaces constraints by simpler constraints while
preserving logical equivalence (e.g. X>Y,Y>X <=> false). Propagation adds new constraints which are
logically redundant but may cause further simplificv.tion (e.g. X>Y,Y>Z ==> X>Z). When repeatedly applied
by a constraint handling engine (CHE) the constraints may become solved as in a CS (e.g. A>B,B>C,C>A
results in false).

CHIP was the iirst CLP language to introduce some constructs (demons, forward rules, conditionals)
[D*88] for user-defined constraint handling (solving, simplification, propagation). These various constructs
have been generalized into CH rules. CH rules are based on guarded rules, as can be found in concurrent
logic programming languages [Sha89], in the Swedish branch of the Andorra family [HaJa90], Saraswats
cc-framework of concurrent constraint programming [Sar89], and - with similar motivation as ours - in the
'Guarded Rules' of [Smo9 1]. However all these languages (except CHIP) lack features essential to define non-
trivial constraint handling, namely handling conjunctions of constraints and defining constraint propagation.
CH rules provide these two features by multiple heads and propagation rules.

'Supported by ESPRIT Project 5291 CHIC!
tSupported by BMFT Research Project ARC-TEC (Grant ITW 8902 C4)

82

Terminological formalismns based on KL-ONE [BS85] are used to represent the terminological knowledge
of a particular problem domain on an abstract logical level. To describe this kind of knowledge, one starts
with atomic concepts and roles, and defines new concepts using the operations provided by the language.

simple-device isa device and some connector is interface.
These intensionally defined concepts can be considered as unary predicates, and roles as binary predicates
over individuals. The limited expressiveness of terminological formalisms enables decision procedures for a
number of interesting reasoning problems like consistency of assertions and classification of concepts.

The key idea of [ScSm9l] for constructing such inference algorithms is to reduce all inference services
to a consistency test which can be regarded as a tuned tableaux calculus. We propose CH rules as a flexible
implementation layer for this consistency test. These CH rules directly reflect the rules of the tableaux
calculus.

In (BaHa9l, Han92] we have shown how a terminological formalism can be parametrized by a concrete
domain, e.g. constraints over rational numbers. This and other extensions carry over to the implementation
with CH rules in a straight-forward manner. Concrete domains can be either also implemented by CH rules
or provided as built-in constraints of the host language. In this way we obtain a fairly natural combination
of three knowledge representation layers on a common implementational basis.

2 Constraint Logic Programming with Constraint Handling Rules

2.1 Syntax

A CLP+CH program is a finite set of clauses from the CLP language and from the language of CH rules.
Atoms and terms are defined as usual. There are two classes of distinguished atoms, built-in constraints and
user-defined constraints.

A CLP clause is of the form
H:- B, B,,. (n >0)

where the head H is an atom but not a built-in constraint, the body B1, B,, is a conjunction of atoms
called goals. There Pre two kinds of CH rules (call declarations [Fru92] are not described in this paper).

A simplification CH rule is of the form
H, Hi <=> G, G;j I B I Bk.

A propagation CH rule is of the form
Hi,....Hi ==> G, Gj I BI Bk.- (i > 0, j >: 0,k > 0)

where the multi-head H 1,.... Hi is a conjunction of user-defined constraints and the guard G, G• is a
conjunction of atoms which neither are, nor depend on, user-defined constraints.

2.2 Semantics

Declaratively, CLP programs are interpreted as formulas in first order logic. A CLP+CH program P is a
conjunction of universally quantified clauses. A CLP clause is an implication

H ---+ B, A ... B,.
A simplification CH rule is a logical equivalence provided the guard is true

(G1 A ... Gj) - (Hi A ... Hi .- B1 A ... Bk). A propagation CH rule is an implication provided the
guard is true

(G I A ... Gj) --- (111 A ... H i --.B , A ... Bk) -
Extending a CLP language with CH rules preserves its declarative semantics, as correct CH rules are

logically redundant with regard to the CLP program. CH rules are not supposed to change the meaning of
a program, but the way it is executed.

The operational semantics of CLP+CH can be described by a transition system. In the following we do
not distinguish between sets and conjunctions of atoms. A constraint store represents a set of constraints.
Let Cv and CB be two constraint stores for user-defined and built-in constraints respectively. Let Gs be a
set of goals. A computation state is a tuple

< Gs, C'ir, CB >.

The initial state consists of a query Gs and empty constraint stores,
< Gs,{},{) >.

83

A final state is either successful (no goals left to solve),
< }), Cu, C' >,

or failed (due to an inconsistent constraint store),
< Gs, C also, ,B > or < Gs, Ct, false >.

The union of the constraint stores in a successful final state is called conditional answer for the query
Gs, writteq answer(Gs).

The built-in CS works on built-in constraints in CB and Gs, the user-defined CS on user-defined con-
straints in Ctf and Gs using CH rules and the LPE on goals in Gs and CEI using CLP clauses.

The following computation steps are possible to get from one computation state to the next.
The built-in CS updates the constraint store CB if a new constraint C was found in Gs. To update the

constraint store means to produce a new constraint store CB' that is logically equivalent to the conjunction
of the new constraint and the old constraint store.

Solve < {fC) U Gs, Ccu, CB > '-" < Gs, (1, CB >
if (C" A CB) - -ý :

The CHE simplifies and propagates from user-defined constraints in Gs and Cu if a new user-defined
constraint was found or the built-in constraint store had been updated so that a guard can be satisfied. To
simplify user-defined constraints (H' U H") means to replace them by B if (H' U H") matches the head H
of a simplification CH rule H <=> C I B and G is satisfied. To propagate from user-defined constraints
(H' U H") means to add B to Gs if (H' U H") match the head H of a propagation CH rule H ==> G I B
and G is satisfied. A guard G is satisfied if its local execution does not involve user-defined constraints and
the result answer(G) is entailed (implied) by the built-in constraint store C6B.

Simplify < H'U Gs. H" UCQ-, CD > .-- < Gs U B, (.'7u, C7B >
if (H <=> G I B) E P and C2.B - H = (H' U H") A answer(G)

Propagate < H' U Gs, H" U Cu, (7B > i < Gs U B, H' U H" U Cu, ('B >
if (H ==> G I B) E P and ('B - H = (H' U H") A answer(G)

The LPE unfolds goals in Gs. To unfold a goal H' means to look for a clause H: - B and to replace
the H' by (H = H') and B. As there are usually several clauses for a goal, unfolding is nondeterministic
and thus a goal can be solved in different ways using different clauses.

Nondeterministic Unfold < {H'} U Gs, Cu. C,, > P--- < Gs U B, Cu,, {H = H') U CB >
if(H :-B) EP

CHEER, an interpreter for CH rules is available based on ECRC's Eclipse Prolog utilizing its delay-
mechanism and built-in meta-predicates to create, inspect and manipulate delayed goals. In such a sequential
implementation, the transitions are tried in the above textual order. We wrote real-life constraint handlers
for booleans, finite domains (ii la C(HIP [D*88]), temporal reasoning (quantitative and qualitative constraints
over time points and intervals [Fru93]) and real closed fields (ý la CLP(R) [3*92]). Typically it took only
a few days to produce a prototype, since one can directly express how constraints simplify and propagate
without worrying about implementation details. If inefficient, once the handler has been tested and 'tuned'
as required, it can be safely reworked in a low-level language.

3 Terminological Reasoning

In this section we will recall the concept language AIC [ScSm9l] as our basic terminological logic (TL)
and show its implementation in CH rules. Section 4 will then proceed with some useful extensions of this
formalism demonstrating the flexibility of the CH rules approach.

3.1 Terminology

A terminoh .-y (T-box) consists of a finite, cycle free set of concept definitions "C isa s" where C is the newly
introduced concept name and s is a concept term constructed from concept names and roles. Inductively,
concept terms are defined as follows:

1. Every concept name C is a concept term.

84

2. If s and t are concept terms and R is a role name then the following expressions are concept terms:
s and t (conjunction), s or I (disjunction), nota s (complement).
every R is s (value restriction), some R is s (exists-in restriction)

An interpretation I with a set dom1 as domain interprets a concept name C as a set C, C dom1 and
a role name R as a set RZ C domz x domz. It can be lifted to concept terms in a straight-forward manner:
conjunction, disjunction, and complement are interpreted as set intersection, set union, and set complement
wrt doml, respectively, and

"a E (every R is s)z iff, for all b E domz, (a, b) E R' implies b E s', and

"a E (some R 3L s)' iff, there is some b E domz such that (a, b) E R', b E s1 .

An interpretation is a model of a terminology T if Cz = s1 for all "C isa s" E T.
Example: The domain of a configuration application comprises at least devices, interfaces, and configu-

rations. The following concept definitions express that these are disjoint sets.

primitive device. 1

interface isa nota device.
configuration isa nota (interface or device).

Let's assume that a simple device has at least one interface. So we introduce a role and employ the exists-in
restriction.

role connector.
simple-device isa device and some connector is interface. D

3.2 Assertions and Reasoning Services

Objects are (Herbrand) constants or variables. Let a, b be objects, R a role, and C a concept term. Then
b : C is a membership assertion and (a, b) : R is a role-filler assertion. An A-box is a collection of membership
and role-filler assertions.

Example (contd): So we can introduce instances of devices and interfaces.

dev2:device, interl:interface, (devlinterl):connector. C]

An interpretation of an A-box A is a model of the underlying terminology that, in addition, maps
herbrand constants to elements of dom 1 . For these constants we adopt the unique name assumption. An
A-box A is consistent if there is an interpretation I and a variable assignment a' : objects - domr such
that all assertions of A are satisfied, i.e., (aa', ba'z) E RZ and bo"z E Cz, for all (a, b) : R and b : C in A.
An object a is z member of a concept C iff for all models " of the terminology all assignments a' : objects
- dom, that satisfy A also satisfy a : C. A concept C, subsumes a concept C2 iff for all models I of the
terminology Cz D Cz. Figure 1 shows the subsumption graph of the terminology developed in Section 3
and 4.

The (in)consistency test is the central reasoning service for terminological knowledge representation
systems with complete inference algorithms. Various other services can be reduced to this test [Ho1901. In
particular, the subsumption (and similarly membership) services can be implemented on the basis of the
consistency test of A-boxes:

1. A concept C, subsumes a concept C2 iff an A-box consisting just of the membership assertion a
C 2 and nota C, is inconsistent.

2. An object a is a member of C wrt the A-box A iff {a : nota C) U A is inconsistent.

'This declaration introduces device as a primitive concept name that is not defined any further.

85

cpu device bus interface configuration

cpudevice -udevice simple- config

verysiple-device

electrical.device electrical-config

lowvcost-device high-voltagedevice

Figure 1: Subsumption Graph of the Example Terminology

3.3 CLP+CH(TL)

Roughly, the consistency test of A-boxes works as follows.

1. Simplify and propagate the assertions in the A-box to make the knowledge more explicit.

2. Look for obvious contradictions (clashes) such as "a:B, a:nota B".

Both steps can be directly mapped to CH rules by regarding assertions as user-defined constraints:

1. I:nota (S or T) <=> I:(nota S and nota T).
I:nota (S and T) <=> I:(nota S or nota T).
I:nota nota S <=> I:S.

I:nota every R is S <=> I:some Rt is nota S.
I:nota some R is S <=> I:every R is nota S.
These replacement rules show how the complement operator can be pushed towards the leaves of a
concept term.

The conjunction rule generates two new, smaller assertions: I:S and T <=> I:S,I:T.
Disjunction is treated by two CLP clauses: I : S or T - I: S.

I:S or T :- I:T.
An exists-in restriction generates a new object: I:some Rt is S <=> (I,3) :Rt, J:S.
A value restriction has to be propagated to all role fillers: I:every R is S, (1,J) :R ==> J:S.
Note that for termination it is essential that this propagation rule is applied only once per matching
pair of membership and role-filler assertions.

The unfolding rules expand concept names to their definitions:
I:C <=> (C isa S) I I:S.
I:nota C <f> (C isa S) I I:nota S.

2. I:nota SI:S ==> false. For ACC we need only this single clash rule.

4 Extensions

In a number of papers the above idea of a tableaux based consistency test as the central reasoning service

has been successfully applied to terminological logics with various other language constructs (e.g., [HNS90,
Hol9O]). This flexibility carries over to extensions of our implementation.

86

4.1 Functional Roles

Roles are interpreted as an arbitrary binary relation over dom1 . Attr:butes (also called features) are functional
roles, i.e., their interpretation is the graph of a partial function domT - domz. Assuming declarations of
attributes of the form attribute F, F an attribute name, we just have to extend our implementation by

(I, J1):F, (I, 32):F => attribute F I J3=J2.

Example (conld): Now we are ready to define a simple configuration which consists of two distinguished
devices:

attribute component-1.
attribute component.2.
simple.config isa configuration and

some component-I is simple-4evice and
some component.2 is simple.device.

Extending the above A-box by

configl: simple.config, (configl ,devl): component-1, and (configl ,dev2) : component_2

the membership service can derive that devl and dav2 are simple devices. -
A more local way to specify functionality of roles is provided through concept terms of the form

"at most one R", R a role name.' An a E domx is an element of (at most one R)" if there is at
most one R-role filler for a. This is implemented through

"I:at most one R, (I, J1):R, (I, 32):R ==> 31=32.

An object does not belong to at most one R if. and only if, there are at least two different role fili'

X:nota at most one R <=> (X,Y):R, (X,Z):R, YOZ.

Ezamplc (contd):
very-simpledevice isa simpledevice and at most one connector. [

4.2 Concrete Domains

In [Han921 restricted forms of quantification over predicates of a concrete domain 1) have been suggested as
concept forming operators. Examples of concrete domains are Allen's temporal interval relations, rational
(natural) numbers with comparison operators and real-closed fields (all of which have been implemented by
CH rules). An admissiblf concrete domain has to be closed under complement (since we have to propagate
the complement operator) and has to provide a satisfiability test for conjunctions of predicates. As an
additional technical requirement we define the abstract domains domz to be always disjoint to the concrete
domain domp of VP.

The syntax for the new operators in the extension TL(V) of the concept language is as follows:

every wo and ... and w, is p
some w0 and ... and wn is p

Where wi is of the form "Ri' of ... of RLk,", Rj are role names, n > 0, ki >_ 0, i = 1,.., n, and p is an
n-ary concrete predicate (constraint) of VP. These constructs are inspired by the value restriction and the
exists-in restriction.

In TL(V) each interpretation Y still interprets concept terms as subsets of domz. Roles link the abstract
domain with the concrete domain. So, a role (resp., attribute) is interpreted as a subset of domz x (domz U
domzp) (resp., as the graph of a partial function domz - (doml U domp)). The semantics of the new
operators is as follows:

2 The at most oan* construct is a restricted form of number restrictions [BS85].

87

a E (every wo and ... and w,, is p)z
iff, for all bi, -. ,b, E domr: (a,bi) E wf, for i = 1,.--,n, implies (bl. .,b,,) E pD

a E (some wo and ... and w,, is p)'
iff, there are bl,.- ,b, E domp such that (a,b,) E wf, for i = ,... ,n, and (b,.,b,,) E pV

The denotation of wT is defined inductively similar to relational product: (a, c) E [R of .SIX iff there exists a
b such that (a, 6) E Sz and (b, c) E Rz. Reading the expressions as natural language sentences should provide

a good intuition about their semantics. For a more evolved discussion the interested reader is referred to
[Han92].

Since dom~r and dome, are disjoint, the propagation of the complement operator nota, which is defined

wrt domz, is more complicated in the extended formalism. We have to revise the nota rules for the value

and the exists-in restriction:

I:nota every R is S <=> I:some R is gnot S.

I:nota some R is S <=> I:every R is g-not S.

Here we have introduced a global complement operator gnot on (domz U domp)", n > 0. With R matching
"wo and ... and w,," the rules are also applicable to the new constructs: every wo and ... and w,, is s
and some w0 and ... and w, is s, respectively. The following rules handle the global complement opera-
tor. They employ ";" to denote a disjunction in a CLP goal, which can be expanded to a collection of ULP
clauses. We introduce unary predicates concept-term, abstract, and concrete as type constraints with

the obvious meaning.

X:g.gnot g..not T <=> X:T.
I:g.not T. ==> concept-term TI I:nota T; concrete I.
(BI,'.",B,):gnot P <=> concrete.complement(P,Q) I

(B,'.-',Bn):Q; abstract B1 ; ... ; abstract B,.

Here concrete-complement is a two place predicate belonging to 7) that associates each predicate of the
concrete domain with its complement wrt to domz,.

Analogous to the value restriction and the exists-in restriction we have to collect (resp., generate) objects
satisfying the concrete domain predicate. This can be implemented through a fixed, finite set of CH rules that
collect (resp., generate) objects according to the roles and attributes occurring in the operators "from left
to right" and then restrict the collected (resp., generated) objects with the concrete predicate. To simplify
the presentation we give two schemata of propagation (resp., simplification) rules. For each term of the form
every w0 and ... and w, is s that occurs in the knowledge base or in a query we introduce a rule

X:every wo and ... and wn is S,{(Xij,Xi,j+l) : fij i = 1, .,n;j= 0 ,ki - l;Xil = X)
==> (Xi,k,+],"" --,X.,ký+1):S.

Note that S is a variable that can be bound also to gnot s during a computation. Analogously, for a term
some w0 and ... and w,, is S we introduce a rule

X:some wo and ... and w i is S
<=> (Xl,k,+I,''',Xfl,k.+l):S,{(Xij,Xi,j+l) : RPjI i = 1,-..,n;j= O,...,ki - l;Xil = X}.

For instance, an expression every f of rl and r2 is p leads to a rule X: every f of rl and r2 is P,
(X,X 1 ,I):rl, (X1,1 1X1, 2):f, (X,X 2,1):r2 ==> (X1,2 ,X2, 1):P.

As an example of a simple concrete domain we take inequalities over rational numbers. The reasoning
in the concrete domain itself is implemented through the following rules which find all contradictions (but
do not perform all possible simplifications).

X > Y <=> Y < X. X < Y, Y < Z ==> X < Z.
X >= Y <=> Y =< X. X =< Y, Y < Z => X < Z.

X < Y, Y =< Z ==> X < Z.

X =< X <=> true. X =< Y, Y =< Z => = < Z.
X < X <=> false.
X =< Y <=> nauber_>(X,Y)I false.

X < Y <=> number_>=(X,Y)I false.

88

The guard number->(X,Y) (resp., number.>= (X, Y)) is true if X and Y are bound to numbers z and y and Z > y
(resp., x > y). The predicate concrete acompl*meat associating concrete predicates with their complements
within the concrete domain is defined by the following facts:

concrete-complementC<,=). concrete-complement (=<, >).
concrete-complement >,<). concret.e-complement (>, =<).

The atoms which are of the form (z, Vi) : (comparison operator) or r : ((comparison operator)(numbcr)) 3 and
are generated by the rules for the new operator have to be translated to the infix syntax of the concrete
domain:

(X,Y):Op <=> member(Op,'<, >, =<, >=)l (X Op Y).
X:(Op C) <=> member(Op.[< >, <, >=), number CI (X Op C).

Finally, we explore the disjointness of the abstract and the concrete domain to discover contradictions:

X:C ==> concept-term(C) l abstract X.
(X,Y):R ==> role R I abstract X.
(X,Y):F ==> attribute R I abstract X.
(X,Y):Op ==> member(Op,[<, >, =<, >)I concrete X, concrete Y.
X:(Op C) => member(Op,[<, >, =<, >=), number CI concrete X.
abstract X, concrete X <=> false.

Example (contd): Now we can associate price and voltage with a device and require that in an electrical
configuration the voltages have to be compatible.

attribute price.
attribute voltage.
electrical-device isa very-simple-device and

some voltage is > 0 and some price is > 1
lov-cost-device isa electrical-device and every price is < 200.
high-voltage-device isa electrical-device and every voltage is 1 15.
electrical-config isa simple.configuration and

every component-I is electrical-device and
every component_2 is electrical-device and
every voltage of component-I and voltage of component_2 is >=. o)

The new operator can also be used to specify upper bounds. This is illustrated by a configuration where
several CPUs are plugged onto a bus with the side condition that the maximal frequency of the CPUs must
be less than the frequency of the bus.

attribute frequency.
primitive bus.
bus-device isa simple-device and bus and some frequency is > 0
primitive cpu.
cpu-device isa simple-device and cpu and some frequency is > 0
role main-4evice.
role sub-device.
bus-config isa configuration and

some main-device is bus-device and every component is cpu.device and
every frequency of main-device and frequency of sub-device is > . o

3 The latter enables nwnbers in concept terns.

89

4.3 CLP+CH(TL(D))

If we apply the CLP scheme of H6hfeld und Smolka (HS90] in a straight-forward manner to A-boxes of
TL(V), we obtain a CLP language with three representation and reasoning layers.

Ezample (conld): The following CLP clauses specify the catalog of devices and describe possible con-
figurations that are based on this catalog.

catalog(devl) :-devl:electrical.device, (devi, 10): voltage, (devl, 100) :price.
catalog(dev2) :-dev2:electrical4device, (dev2,20) voltage, (dev2, 1000) :price.
possible.config(C) :-

catalog(Di), (C,D1):componenti,
catalog(D2), (CD2) :component.-2.

The following queries enumerate possilble configurations satisfying the requirements.

:-possible€config(C).
:-possible.config(C), C:electrical-config.
:-possible.config(C), C:electrical-config,

(C,Di) :component_1, DI:lowvcost-device,
(C,D2) :component.2, D2: high-voltage-device.

The first, query enumerates all possible electrical configurations comprising two devices based on the catalog.
i.e., configurations comprising two devl, two dev2, or devl and dev2. The second query omits the configu-
ration where devl is component one and dev2 is component two. Finally, the third query has no solution,
because the catalog lists only one low-cost device and there is no high-voltage device with a compatible
voltage. 0

5 Conclusions

Constraint handling rules (CH rules) are a language extension for implementing user-defined constraints.
Rapid prototyping of novel applications for constraint techniques is encouraged by the high level of abstrac-
tion and declarative nature of CH rules.

In this paper we investigated the terminological reasoning formalism. Flexibility was illustrated by
extending the formalism and its implementation with attributes, a special quantifier and concrete domains.
Applicability was illustrated by sketching a generic, hybrid knowledge base for solving configuration problems.

References

[BaHa9l] F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept languages.
In Proceedings of the 121h International Joint Co-aference on Artificial Intelligence, 1991.

[BS85] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):!71-216, 1985.

[Coh90] J. Cohen, Constraint Logic Programming Languages, Communications of the ACM 33(7):52-68,
July 1990.

[D*88] M. Dincbas et al., The Constraint Logic Programming Language CHIP, Fifth Generation Com-
puter Systems, Tokyo, Japan, December 1988.

[Fru92] T. Friihwirth, Constraint Simplification Rules (former name for CH rules), Technical Report
ECRC-92-18, ECRC Munich, Germany, July 1992 (revised version of Internal Report ECRC-LP-
63, October 1991).

[Fru93] T. Fruhwirth, Temporal Reasoning with Constraint Handling Rules. Technical Report Core-93-8,
ECRC Munich, Germany, January 1993.

90

(HaJa90] S. Haridi and S. Janson, Kernel Andorra Prolog and its Computation Model. Seventh lnt Con-
ference on Logic Programming, MIT Press 1990, pp. 31-46.

[Han92] P. Hanschke. Specifying role interaction in concept languages. In Third International Conference
on Principles of Knowledge Representation and Reasoning (KR '92), October 1992.

[Ho190] B. Hollunder. Hybrid inferences in KL-ONE-based knowledge representation systems. In 14th
German Workshop on Artificial Intelligence (GWAI-90), volume 251, pages 38-47. Springer, 1990.

[HNS90] B. Hollunder, W. Nutt, and M. Schmidt-SchauB. Subsumption algorithms for concept description
languages. In 9th European Conference on Artificial Intelligence (ECAI'90), pages 348-353.
Pitman Publishing, 1990.

[HS90] M. Hbhfeld and G. Smolka, Definite Relations over Constraint Languages. LILOG Report 53,

IBM Deutschland, West Germany, October 1988.

[3*92] J. Jaffar et al., The CLP(R) Language and System, ACM Transactions on programming Lan-

guages and Systems, Vol.14:3, July 1992, pp. 339-395.

[JaLa87] J. Jaffar and J.-L. Lassez, Constraint Logic Programming. ACM 14th POPL 87, Munich, Ger-
many, January 1987, pp. 111-119.

[Sar89] V. A. Saraswat, Concurrent Constraint Programming Languages, Ph.D. Dissertation. Carnegie
Mellon Univ., also TR CMU-CS-89-108, 1989.

[ScSm91] M. Schmidt-SchauB and G. Smolka. Attributive concept descriptions with complements. In
Journal of Artificial Intelligence, 47, 1991.

[Sha89] E. Shapiro, The Family of Concurrent Logic Programming Languages, ACM Computing Surveys,
21(3):413-510, September 1989.

[Smo9l] G. Smolka, Residuation and Guarded Rules for Constraint Logic Programming. Digital Equip-
ment Paris Research Laboratory Research Report, France, June 1991.

[VH91] P. van Hentenryck, Constraint Logic Programming, The Knowledge Engineering Review, Vol 6:3,
1991, pp 151-194.

91

A Powerful Evaluation Strategy For CLP Programs

Hong Gao David S. Warren
Department of Computer Science Department of Computer Science

State University of New York State University of New York
Stony Brook, NY 11794 Stony Brook, NY 11794
gwohong~cs.sunysb.edu warren@cs.sunysb.edu

Abstract

This paper presents a new, powerful evaluation strategy (OLDTC-AM) for CLP programs. OLDTC-
AM is developed by combining the OLDT evaluation strategy with a logical answer manipulation mech-
anism. Under the OLDTC-AM evaluation strategy, the termination characteristics of CLP programs are
greatly improved and the expressive abilities of CLP languages are greatly increased. One application of
this power is the direct solving of optimisation problems. Through an example, we show how an opti-
misation problem can be expressed as a CLP program simply and be solved logically in the constraint
logic framework.

1 Introduction

To review briefly, CLP is a framework for constraint handling in logic programming [4] [5]. In othez words,
CLP is a scheme which extends Horn clauses with constraint predicates'. The CLP scheme defines a class of
languages, in which each instance, CLP(D), is a programming language and is obtained by the specification
of the structure of a computation domain V. For example, CLP(R) is a logic programming language with
the computation domain being the real numbers R.

Prolog is a logic programming language based on Horn clauses. The evaluation strategy that Prolog
uses is the SLD proof strategy for Horn clauses. Formally SLD resolution is refutation complete for Horn
clauses [7]. This means that if a ground answer is a logical consequence of a program, then there is an SLD
refutation that generates that answer (or a more general one). However, there may be some paths in the
tree of refutation that are infinite in length. Since Prolog must search this tree for answers, its depth-first
search may get caught on an infinite path, before it gets to an answer.

OLDT, as an alternative evaluation strategy for Horn clauses proposed in [1] [10], is complete and
terminates in many cases for which Prolog's strategy loops infinitely.

Since CLP extends Horn clauses with constraint predicates, in most current CLP systems a CLP program
is evaluated in the following way: for an ordinary predicate, the SLD refutation strategy is used to perform
inference; for a constraint predicate, the constraint solver is called to solve that constraint. The SLD
evaluation part in CLP's underlying engine causes the same termination problem as Prolog has.

Inspired by the way OLDT works for Prolog programs, we propose to replace SLD with OLDT in current
CLP evaluation strategy, and further develop an answer manipulation mechanism. The new evaluation
strategy is called OLDTC-AM (OLDT with Constraint handling and Answer Manipulation).

In the following sections, we first describe the OLDTC-AM evaluation strategy through two steps:
OLDTC based on OLDT and AM (answer manipulation). Then we discuss the powerful strengths OLDTC-
AM has as an evaluation strategy for CLP programs from three aspects. Finally we conclude the major
results we present in this paper.

1 We do not discuss logic programs with negation in this paper.

92

2 OLDTC-AM

In this section, we briefly introduce the OLDT evaluation strategy. Based on that we explain how OLDTC-
AM works for CLP programs.

2.1 OLDT

OLDT stands for Ordered selection strategy with Linear resolution for Definite clauses with Tabling. The
concept underlying it is termed "memoing". In a deterministic language, the idea of "memoing" is simple:
during execution, maintain a table of procedure calls and the values they return; if the same call is made
later in the computation, do not re-execute the procedure, but use the saved answer to update the current
state as though the procedure had been called and had returned that value.

Conceptually, Prolog's nondeterministic computation can be transformed into a set of deterministic ones
in the following natural way [1i]: a machine that is carrying out a nondeterministic procedure is viewed as
duplicating itself at a point of choice, as disappearing when it encounters failure. So at any time there is a set
of deterministic machines computing away. The set gets larger when any one has to make a nondeterministic
choice, and it gets smaller when any one fails. To add memoing, a single global table, which contains every
procedure call that has been made by any machine and the answers that have been returned for each such
call, is maintained. Since the computation is nondeterministic, there may be none, one, or many answers for
any single call in the table.

For example, there is a simple Prolog program P as follows.

p(X,Y) :- arc(X,Y).
p(X.Y) :- arc(X,Z), p(Z,Y).
arc(a,b). arc(b,.). arc(b,d).

Its evaluation procedure in corresponding SLD and OLDT is shown in Figure 1.

2.2 OLDTC

OLDTC is very similar to OLDT except that it includes constraint handling. During computation, if a
machine encounters a constraint predicate (i.e., the predicate for a primitive constraint), it calls a constraint
solver2 to solve this constraint instead of treating this predicate as an ordinary predicate and applying the
OLDT algorithm to it. If the constraint is a linear equation or inequality, it is solved directly. If it is a
non-linear constraint, it will be delayed and may get solved later if it becomes linear due to the solving of
other constraints. Hence on each machine, the conjunction of constraints changes during computation, with
constraints being added and some being simplified away.

In general, OLDTC works as follows. When a machine encounters a call, it looks the call in the table.
If it is not there, it adds the call (as in OLDT, but without constraints) and makes the call passing no
constraints into it. When a machine returns, it adds its answer and its simplified constraints to the table.
If when a call is made, a matching call is found in the table, machines are forked off for each associated
answer (and corresponding set of constraints) in the table. The constraints in the table for the answer are
conjoined in with the current constraints of the calling machine. Note in this way, since constraints are not
passed down into subroutines, constraints are completely computed bottom-up.

Since we can consider the answer substitution to be a set of equality constraints, answers saved in the
table entry for each CLP program predicate call can be viewed as a set of simplified, consistent constraints.

2.3 Answer Manipulation

For the answers saved in the table entry, what are their logical meanings? One way to think about the table
entries is that they represent rules that logically follow from the program and the constraint theory. For
example, if a table entry for a program P is:

[call: p(XIX 2), [rei: [XI = A,X 2 > b], ret: [XI = f(X,),X 3 = c,X 2 > bill
2 Baued on a concrete computation domain V.

93

?-P(a,X)

arc(a,X) arc(a,Y), p(Y,X)

I I
arc(a,b) p(b,X)

arc(b,X) arc(bYl), p(Y1,X)

arc(b,a) arc(b,d) P(a,X) p(d,X)

infinite loop

SLD Evaluation Strategy

?.p(a,X) :p(a,a), p(a,b), p(a,d)

arc(a,X) arc(a,Y), p(Y,X)

I I
arc(a,b) p(b,X)

arc(b,X) arc(b,Y1), p(Y1,X)

arc(b,a) arc(b,d) P(a,X) p(d,X)

p(a,a) p(a~b) p(a,d)

OLDT Evaluation Strategy

Figure 1: SLD and OLDT evaluation strategy

94

then this means that the following rules are logically implied by the program P.

p(Xi,X,): - X1 = A, X2 > b.
p(X,, X,): - X, =1(Xs), X 2 > b, X3 = c.

Based upon the logical meaning of answers, we can define two logic operations on answers, one is answer
pzojection, the other is answer merging [2].

2.3.1 Answer Projection

By definition an answer to a goal should be bindings to the variables appearing in the goal itself. If after a
computation, an answer for a goal G contains variables which do not appear in G, then a logically equivalent
form which contains only bindings to the variables in G would better be output. This can be done through
an operation called answer projection.

There is a variety of ways of doing answer projection. One way we propose here is the use of Two-Phase
Simplex algorithm. Two-Phase Simplex algorithm is an algorithm developed in the operation research field
[8) [9]. Its main function is: given a set of linear constraints

a*iX, + ..- + a,,mXm, < bi

a.,tX, + "-+ a..mXm <5 b.
X, > 0

XL > 0

and an objective function,

C = X, +."-+ Xm

Two-Phase Simplex algorithm returns the maximal value for C.
Now let us look at how Two-Phase Simplex algorithm can be employed in an answer projection procedure

through an example. Suppose during a CLP program computation, we have a table entry like

(call:p(X), reit:[X<U+V, 2*U+3*V<1o, U +5*V<20, U>0, V>0]]] (1)

This entry tells us that the following rule is implied by the original program.

p(X) :-
X < U+V,
2*U + 3,V < 10,
U + 5,V < 20,
U > 0.
V >0.

The above rule says that p(X) is true as long as X is less than any sum of value U and V, where U and V
are subject to the following linear constraints

2*U + 3*V < 10,
U + SV < 20,
U > 0,
V>O

Imagine that if we can find the maximal value of the sum of U and V, for example a, then logically
X < a, is an equivalent answer to the complicated one in (1).

By regarding C = U + V as an objective function constrained by the above four linear constraints, we
can see that finding the maximal value of C = U + V is a typical problem in the operation research field.
By applying Two-Phase Simplex algorithm to this problem, we can obtain the maximal value of C = U + V,

95

say Ir. So we can return the simpler expression X < u which eliminates the non-goal variables U and V as
the answer to p(X).

For most current CLP systems, answer projection is only performed at the last step, i.e., when CLP
systems return fAnal answers to the initial query8 . The key point here is that we propose to perform answer
projection even in the middle of a computation. This is impossible for evaluation strategies which do not
have memoing mechanism. Without memoing mechanism, there is no way to tell which variable does appear
in the predicate call and which does not. In an evaluation strategy with memoing mechanism, such as
OLDTC, adding answer projection will simplify answers saved in the table entry for a predicate call, and
hence reduce the computation complexity when later this answer is used for the same predicate call.

Notice that in Jaffar's CLP('2) system, the Phase I of the Two-Phase Simplex algorithm is used, but
only for consistency checking of a set of collected constraints. Here the full phase of Simplex algorithm is
proposed to perform answer projection.

3.S.2 Answer Mer ing

We know answer projection works on a single answer of a predicate call. Due to the nondeterministic feature
of logic programs, there may have several answers computed for a predicate call. By studying the inter-
relationships among these answers, we propose that further answer simplification can be done through an
operation called answer merging.

Let P be a logic program and G be a goal. Let A, and A2 be two answers of G. If A , 4-- A2 is logically
implied by P, then A2 is called a redundant answer compared with A,. The reason for calling an answer
redundant is: if At is an answer for G in program P, then G ,.- A, has been proved from the program P.
So knowing that A, 4-- A2 , we can prove G -- A2 immediately. In other words, G -- A2 can be inferred
automatically from G +- A, and A, +-- A,. Therefore A2 is redundant. The elimination of redundant
answers is performed through answer merging.

For example, suppose we have two answers for the goal p(X) as follows:

[call: p(X), [vet : [X > 6], Pet : [X > 10]]]

This means that the following rules are implied by the original program.

p(X) :- X > 6.
p(X) :- x> 10.

Since X > 10 implies that X > 6, the second rule can be inferred automatically through the first rule and
the relation between X > 10 and X > 6. Therefore we regard X > 10 as a redundant answer and eliminate
it from the table entry.

As we discussed before in answer projection, answer merging is also impossible to implement in evalu-
ation strategies which do not have memoing mechanism. Without memoing mechanism, computed answers
are not saved, hence comparisons among different answers cannot be performed and their mutual implying
relations cannot be determined.

By combining OLDTC with the above two answer manipulation mechanism together, we develop a new
evaluation strategy for CLP programs. It is OLDTC-AM.

3 Advantages of OLDTC-AM

Using OLDTC-AM as the new evaluation strategy for CLP programs has the following advantages.

3.1 Efficient Computation

OLDTC-AM increases the efficiency of computation. First during a computation, if the same call is en-
countered later, by the principle of OLDT, the same call is not recomputed, instead all the answers saved

SNote that different ways may be used to do answer projection.

96

• •M

OLDTC-AM

OLDTC

OLDT
SLD

CLP

Figure 2: Computational ability comparison among various evaluation strategies

in the table for this call are used to update environments as through the call is computed. Second, answer
projection simplifies answers saved in the table entry, so the computation becomes less complex by using
simpler answers if the same predicate call is encountered again. Third, answer merging prunes the search
space by eliminating redundant answers from the set of answers to a call. So only the non-redundant answers
are used in the computation.

3.2 Termination Characteristics
OLDTC-AM makes more logically-meaningful CLP programs terminate. In other words, it makes more
logically-meaningful CLP programs computable. The computational abilities among various evaluation
strategies: SLD, OLDT, CLP 4, OLDTC, OLDTC-AM, can be summarised in Figure 2.

In Figure 2, each rectangle represents a set of computable logic programs and the bigger rectangle
computes more logic programs than the smaller one does. We already know that OLDT makes more logically-
meaningful programs computable than SLD. We also know that current CLP evaluation strategy, such as
the one used in CLP(R), has constraint handling ability SLD does not have. Hence current CLP evaluation
strategy computes more logic programs than SLD. It is obvious that OLDTC computes more logic programs
than separate OLDT or current CLP evaluation strategy due to its combined power of OLDT and constraint
handling. Compared with OLDTC, OLDTC-AM further terminates more logic programs by having answer
manipulation mechanism. This can be understood through the following example.

We know that OLDTC employs a memoing mechanism to terminate more CLP programs. But for the
following CLP program

p(XY,C) :-
c_>w,
q(X.Y,W).

P(X.Y,C) :-
C > W+Ci,
q(X.Z.W), p(Z.YCI).

q(&,b.1). q(b.a.2). q(b.d.4).

and the query p(a,dC), the computation in OLDTC still goes into infinite loop. There are infinitely many
answers saved in the OLDTC table for call ?-p(a,dC) due to the existence of loop between a and b.

[call: p(a, d, C), [ret : C > 5, ?et : C > 7, vet: C > 9,...]]
But if the above program is evaluated in OLDTC-AM, since any answer (except C > 5) in the above list
are redundant compared with C > 5, it is eliminated. Only C > 5 is saved in the table entry. So the
computation terminates.

4Thoae used in current CLP systems, i.e., SLD inference engine with constraint handling.

97

3.3 Optimization Problems

Last but not least, OLDTC-AM further enhances the expressive power of CLP languages in the sense that
optimisation problems can be solved simply and logically m the constraint logic framework.

An example of optimisation problems is the "shortest path" problem. We will represent a weighted
directed graph by a set of facts of the form:

arc(Sourcenwde, Tavget-node, Weight)

Then we can define a program as follows:

suboptimalkength(XY.C)
C> W.
arc(X.Y.W).

suboptamalIength(X,YC)
C > W+C1,
arc(X.Z,W).
suboptimallength(ZY,C1).

which says that

"* (first rule): a path from X to Y is too long if its length is longer than the weight of an arc from X to
Y;

"* (second rule): a path from X to Y is too long if its length is longer than the sum of the length of an
arc from X to Z and the length of going from Z (Z as an intermediate node) to Y.

During evaluation by OLDTC-AM, the query ?- suboptimallangth(ad,C) may compute a table
entry like:

[call : suboptimallength(a, d, C), ?et : [C > 24]

This corresponds to having computed the following rule:

subopiimal-length(a, d, C) : -C > 24.

which means that we have proved that from a to d, the path whose length is longer than 24 is a suboptimal
one. Now say there is a new answer computed for this call:

Pet : [C > 36]

This tells us that another rule is implied by the program:

auboptimaerength(a, d, C): -C > 36.

But since (C > 24) #-- (C > 36), i.e., (C > 36) implies (C > 24), the latter rule logically follows from the
previous rule in the constraint theory of >. Therefore, we need not add this new but redundant answer
to the table, but can just fail it according to the definition of answer merging. When the computation is
finished, the table entry will have an answer, for example, such as:

suboptimalJength(a, d, C) : -C > 16.

which indicates that from a to d, any path whose length is longer than 16 is suboptimal. In other words,
any path from node a to node d longer than 16 is too long and not an optimal one. Therefore, the optimal
(or shortest) length of a path from node a to d should be 16.

In solving optimization problems, OLDTC-AM has its advantages over the SLD resolution strategy used
in most current CLP systems [3] [6). An optimisation problem is a generate-and-test problem which needs
to search the whole derivation space and compare all feasible solutions there. But in current CLP systems

98

(such as Jhiar's CLP('R) system), once a branch in the derivation tree succeeds, substitutions along this
branch awe returned as an answer to the programmer. The systems continue to search other answers upon
the programmer's request. Logically, this sequence of answers is disjunctive, but current CLP systems never
do any comparisons among these disjunctive answers. So if a programmer wants the best answer among all
solutions, he must store all solutions in a data structure and compare them one by one. All these processes
and the control strategy of answer searching have to be hand-coded explicitly into his program. In this
way, the resulting program will become complicated and lack an intuitive logical meaning when specifying a
practical optimisation problem. But with the OLDTC-AM resolution strategy, all the above data structures
and the control scheme are left to the underlying system - memoing and answer merging. With memoing,
the system saves the computed solutions automatically. With answer merging, the system compares saved
disjunctive solutions and gets rid of those redundant (or suboptimal) solutions. Therefore a programmer can
write much purer logic programs without having to code the search strategy into his programs.

4 Conclusion

The goal of this paper has been to present a powerful evaluation strategy for constraint logic programs.
In order to do this, we employ the main ideas of the OLDT evaluation strategy, develop a logical answer
manipulation mechanism, and combine them together to form OLDTC-AM. Due to the memoing and answer
manipulation mechanism, OLDTC-AM terminates more CLP programs than the SLD evaluation strategy
underlying most current CLP system engines. In the meanwhile, OLDTC-AM improves the efficiency of
computation by eliminating redundant answers and redundant recomputations. With OLDTC-AM, an
optimization problem, that would otherwise requires an ad hoc algorithm, can be easily specified as a
constraint logic program and can be solved logically in the constraint logic framework.

References

[1] Susanne Wagner Dietrich and D.S. Warren. Extension Tables: Memo Relations in Logic Programming.
Technical report, Computer Science Department, SUNY at Stony Brook, March 1986.

[2] Hong Gao. Declarative Picture Description and Interpretation in Logic. PhD thesis, Computer Science
Department, SUNY at Stony Brook, 1992.

[3] N.C. Heinse, 3. 3tar, S. Michaylov, P.3. Stuckey, and R.H.C. Yap. The CLP(R) Programmer's Manual,
version 1.1. Technical report, I.B.M T.J. Watson Research Center, November 1991.

(4] J. Jaffar and J-L. Lasses. Constraint Logic Programming. In Proc. of the 14th ACM Principles of
Programming Languages Conf., pages 111-119, January 1987.

[5] 3. Jafar and S. Michaylov. Methodology and Implementation of a CLP System. In Proc. of the 4th
International Conf. on Logic Programming, pages 196-218, May 1987.

[6] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R) Language and System. Technical
Report, April 1988.

[7] 3. W. Lloyd. Foundation, of Logic Programming. Springer-Verlag, 1984.

[8] Claude McMillan. Mathematical Programming: An Introduction to the Design and Application of Op.
timal Decision Machines. Wiley, New York, 1970.

[9] Katta G. Murty. Linear and Combinatorial Programming. Wiley, New York, 1976.

[10] Hisao Tamaki and Taisuke Sato. OLD Resolution with Tabulation. In Proc. of the 3rd International
Conf. on Logic Programming, pages 84-98, 1986.

[11 David S. Warren. Memoing for Logic Programming. Communications of the A CM, pages 93-111, March
1992.

99

Practical Issues in Graphical Constraints

Michael Gleicher
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
gleicher@cs .cmu. edu

Abstract
Use of constraint-based techniques in interactive graphics applications poses a variety of

unique challenges to system implementors. This paper begins by describing how interface
concerns create demands on interactive, constraint-based, graphical applications. We will
discuss why such applications must be able to handle systems of non-linear constraints, and
survey some of the techniques available to solve them. Employing these numerical algorithms
in the contexts of interactive systems provides a set of challenges, including dynamically
setting up the equations to be solved and achieving adequate performance and scalability. This
paper will explore these issues and describe the methods we have used in our efforts to address
them.

1 Introduction

The ability to represent and maintain relationships among objects can be an extremely useful tool
in a graphical application. Since the earliest interactive graphical applications[25], the use of such
constraint techniques has been demonstrated in applications including drawing, 3d modeling, user
interface construction, animation, and design.

In employing constraint-based techniques in such graphical applications, system designers
must face a variety of new challenges. This paper aims to describe some of these challenges, and
discuss some techniques to address them. We begin by looking how usability concerns for such
applications create demands on what systems must do. We will discuss why these applications will
often demand the power and generality of non-linear numerical techniques. Issues in employing
such algorithms within interactive systems will be surveyed, with an emphasis on how the equations
to be solved can be set up and how adequate scalability and performance might be achieved.

For this paper, we are concerned with the class of graphical applications where the user creates
and edits models made up of a number of graphical objects. An example is an object-oriented
drawing program, where the model (or drawing in this case) is made up of lines and circles,
but not a painting program in which the model is a bitmap or image. Also, the constraints that
we are concerned with in this paper are those used within the model, for example, to enforce a
relationship within a drawing. This is different from the common use of constraints in user interface
construction, where a constraint is used by the programmer to enforce internal consistency within
the program. These two views of constraints provided different sets of challenges, although some
of the issues and solutions presented here apply to both.

100

2 The Challenges of Constraint-Based Graphical Applications

An interactive graphical application with constraints must contend with the same basic challenges
as those without constraints. However, there are challenges which are inherent when constraints
among objects are provided. Constraints obviously add to models, in addition to the graphical
objects, constrained models also contain constraints which must be stored, displayed, edited, saved,
etc. More significantly, constraints change the nature of interaction in a graphical application.
Without them, actions only affect the objects to which they refer. For example, dragging an
object moves only the object. With constraints, this locality is lost: altering one object may cause
other objects to be affected. This global nature of constraint operations is at the core of many
of the difficul'. issues in employing constraints. It introduces challenges in implementation, in
performance, and in usability. The latter is potentially most concerning, not only for its difficulty,
but also because usability concerns create further challenges for implementation and performance.

Without user specified constraints, graphical objects have fixed behaviors. For instance, an
ellipse in a drawing program behaves like an ellipse. The system designer can design a good,
usable behavior which the user can learn and apply to all ellipses. When user specified constraints
among objects are introduced, the situation changes. To begin with, the behaviors can become more
complicated because of interactions among objects. Each combination of objects and constraints
will have its own behavior. These behaviors are specified by the user in terms of the constraints;
the user is effectively programming.

As in more traditional programming, complexity in the constrained behavior of a graphical
model becomes a problem when it has bugs, e.g. when the behavior isn't what is desired or expected.
The most obvious form of bug is when the constraints force the model into a configuration which is
not what the user desires, or the constraints prevent the user from achieving a desired configuration.
Another class of constraint bug stems from bad constraints where solutions cannot be found, either
because of conflicting specifications or solver failures.

Because constraint errors occur, interactive graphical applications which provide constraints
to users must deal gracefully with bad situations, such as conflicting or redundant constraints.
Underdetermined models also must be handled, as it is impractical to expect the user to fully
specify all possible degrees of freedom. Because of the potential for errors, it is crucial to aid
the user in understanding the complex behaviors of constrained models. For this task, providing
continuous motion animation seems to be key. This places demands on systenis to provide rapid
enough iterations to provide the illusion of continuous motion. Another important weapon in
avoiding constraint bugs is the development of specification techniques which help avoid them;
this is evidenced by the large effort in automatically inferring constraints, such as [10, 1, 16].

The interactive nature of constraint-based graphical application also causes the systems of
constraints to be dynamic. Typically, as the user edits the model, constraints are added, removed,
and altered. While there are some applications, such as [231, where it is possible to separate
manipulation and modeling, applications must typically interleave altering the constraints with
solving them. The ability to rapidly alter the set of constraints can also be used to create new
facilities in the solver. For example, switching a constraint on and off at the correct times permits
the creation of inequality constraints, using what are called active-set methods[4].

With all of the discussion of constraints, it is easy to lose sight of the fact that constraints are
usually a tool to aid in the process of creating graphical models. This leads to demands of reliability
and robustness for solvers. Transparency also means that users should not be forced to deal with

101

equations. Artifacts of the solving process must be hidden from the user. For example, users should
not be forced to create constraints which have properties which stem only from solver limitations;
for example, some solvers require constraints to be expressible as directed acyclic graphs.

2.1 An Example Application

A constraint-based drawing program demonstrates how the issues in building interactive constraint-
based graphical applications manifest themselves. The idea of using constraints in a drawing
program is not new; in fact, it dates back to one of the earliest interactive systems[25]. However,
despite the nearly universal agreement on their utility, constraints never really caught on in graphical
applications. What has been successful are direct manipulation programs.

We have built a drawing program called Briar[lO, 5] which aimed to keep the the features
of the successful direct manipulation systems, but to augment them with constraints[6]. Briar is
based on an existing, highly evolved direct manipulation drawing techniques[2], and augments
them by making the relationships between objects persistent. Briar provides a set of snap-dragging
features to help users draw precisely and quickly. However, unlike other snap-dragging systems,
Briar provides the facility of making these snapping operations into persistent constraints. This
can be done without the user explicitly specifying the constraints. Briar uses a visual language for
displaying the constraints, which closely parallels the snap specifications, and also provides simple
methods for deleting constraints based on drawing operations. The avoidance of direct reference
to constraints avoids several classes of constraint bugs including conflicts[6].

Despite its constraint features, Briar maintains the fundamental direct manipulation feel of
dragging. Like more traditional programs, objects are dragged and move with continuous motion,
except that in Briar, constraints among the objects can be maintained. For example, the user can
draw a mechanical contraption, and have it stay together when the crank is turned.

Briar only represents two types of constraints: point--on--object and point-on-point. More
complicated relationships, such as distance, orientation, or co-linearity, are created by combining
these simple elements with special alignment objects. These more complex relationships lead to
non-linear equations which Briar's solver must handle. Hierarchical'grouping with rotation and
interesting objects also lead to non-linearities.

Another important aspect of the constraints in Briar is that they are dynamic. The user is
continually creating and destroying constraints. These changes occur during drawing operations,
so it would be unacceptable if adding or deleting a constraint were time consuming.

3 The Need for General Purpose Solving

The interface needs of interactive graphical applications place difficult performance demands on
constraint algorithms. In order to keep up with interactive rates, it is tempting to make restrictions
on the types of constraints which the solver can handle. However, many graphical applications
require maintaining sets of non-linear equations, and the generality given by the ability to manage
this general class of equations affords interesting possibilities in systems.

Even in the most basic 2d applications, non-linear equations arise. Simple geometric relation-
ships, such as distance and orientation, give rise to non-linear equations. Many graphical objects
are most easily represented in ways that give rise to non-linear functions. Similarly in 3D, many
of the interesting relationships among objects require non-linear equations.

102

When the realm of possible constraints is expanded to the class of non-linear equations, there
is more flexibility to devise interesting constraints. For example, we have placed constraints on
the outcome of viewing transformations[l 11, on the positions of reflections, and on the results of
lighting calculations, permitting constraining the color that an object appears. Such constraints are
important as they permit users to control models directly in terms of aspects that they are interested
in.

4 Solving Constraints

A constraint in an interactive graphical application is a relationship, typically geometric, among
objects. A constraint is represented by an equation which must hold for the constraint to be satisfied.
This equation is over the variables which determine the configuration of the model, called the state
vector. The standard form of these equations is to write them as some function of the state vector
equals a constant, often zero with no loss of generality. Inequalities are similarly handled by an
equation which states that the function is greater than zero. This function is called the constraint
function. The job of a constraint solver is to find configurations of the state vector for which the
constraints hold. If continuous motion is to be achieved, the solver must be called for each frame.

A guaranteed general method for solving systems of non-linear equations does not exist, and
there are arguments that such a method cannot exist[21]. However, there are methods, which
despite their lack of total generality and guarantees, perform reasonably on realistic problems.
These methods iteratively converge on a solution to the equations. A well known iterative method
for solving non-linear systems is Newton's method, which has many variants and is the basis for
many of the more sophisticated techniques. For each iteration, these methods solve a linear system
to compute the next value.

We have been using a variant of these iterative approaches in our work, which we call differential
methods. Rather than specifying what the desired values for constraint functions are, we instead
specify how they are to change, e.g. their time derivatives. For example, we might specify that
something is not to change, or is to move towards a target. Such an approach is useful for interaction
because we want our objects to move continuously, rather than jump to their goal positions. The
derivatives of variables can be computed from the derivatives of the constraint functions by solving
a system of linear equations, even if the constraint functions themselves are non-linear. Differential
methods are detailed in [11] and [81.

Differential methods and Newton-like methods are very similar. Both repeatedly solve linear
systems to iteratively move towards satisfying non-linear equations. One way to describe the
difference might be that a Newton-style method attempts to race towards the goal as fast as
possible, regardless of the route taken, while the differential methods try to take a good continuous
route, even if it takes longer. The former method runs more of the risk of speeding off in a wrong
direction, but may arrive at its goal sooner.

The method used to solve the constraints is not really important. What matters is that the
constraints are solved in a manner that is fast, robust and reliable. In fact, precision, another typical
concern of numerical analysis, is typically not as important - we are often willing to let our objects
be an imperceptible tenth of a pixel apart if it allows our solver to be faster. With an iterative
method, we gain control over this tradeoff, as we can stop iterating when the algorithm has gotten
close enough. Iteritive methods can be used not only for the non-linear system solving, but also
for solving the linear systems.

103

4.1 Solving Linear Systems

Almost any method chosen will repeatedly solve systems of linear equations based on the derivatives
of the non-linear equations.' Linear system solving dominates the computational complexity of
constraint-based graphical applications (see section 5), and is a key place where stability and
reliability concerns must be met.

The linear system solver at the core of the constraint solver must be able to handle ill-conditioned
and singular cases. To better handle these cases, we use a variant of damping, a technique seen in
robotics [26, 191 and in the Levenberg-Markardt method [21]. Such methods add small amounts
to the diagonal elements of the matrix raising their condition number and permitting them to be
solved more easily. The method effectively trades some precision in the constraint calculation for
better performance and stability.

To solve linear systems in our constraint applications, we have used a conjugate-gradient
algorithm. This algorithm is particularly attractive because it permit exploiting sparsity without
pre-analysis. Because it is an iterative technique, we have the ability to trade precision for
performance by adjusting tolerance parameters. While there are techniques, such as singular value
decomposition, which better handle singular and near-singular matrices, these techniques do not
exploit sparsity as easily nor permit the performance adjustments. In [22], the tradeoffs between
SVD and conjugate gradient are explored more closely.

5 Scalability and Performance

Performance is important to interactive graphical applications so they can achieve the appearance
of continuous motion. In a conventional drawing program this can be achieved easily as only
one object is moving at a time. If it is a complicated or compound object, it can be drawn in a
simpler form, such as a bounding rectangle, because it cannot change internally. Because of this
constant 0(1) complexity in the interactive loop, direct manipulation drawing is practical on small
computers.

In a constraint-based system, the constant time portions of drawing systems no longer exist.
Many objects can potentially change at once. Where this complexity hurts the most is in constraint
solving, but the fact that many object move simultaneously also makes other things, like redraw,
more complicated. Multiple objects moving also raises the cognitive complexity of drawing, as
the behaviors become quite complicated.

The computational complexity of constraint-based graphical applications is dominated by the
linear systems which must be solved in order to solve the non-linear equations. Solving a system
of linear equations is, in the most general case, an 0(n 3) problem. However, because the matrices
which arise in graphical constraint problems are typically sparse, the complexity can be lower.
Because each constraint only affects at most a small constant number of objects, the matrices only
have O(n) entries in them, and can therefore be solved in 0(n2) time[22]. For certain classes of
constraint problems, the linear system can be solved in linear time[24].

To maintain interactive performance, it is critical to reduce the complexity of solving algorithm
by exploiting the sparsity of the systems which are solved. However, without severely restricting
the class of models which the user can build, this still leaves greater than linear complexity. Since

IThere are non-global methods for solving non-linear equations which do not solve linear systems. In [20] these
relaxation or penalty methods are described, including a discussion of why they are not good.

104

we cannot reduce the polynomial coefficient, one must instead reduce the size of the problems
which are solved, without imposing size restrictions on the user. Tactics available for this include
partitioning the constraints into smaller subproblems, which is explored in [22], and removing
"dead" objects and constraint from the computations.

The basic strategy for reducing problem size is to determine which objects might move and
only operate on these objects. Once the set of objects is pared, constraints which depend only
on dead objects can be removed. Constraints which depend on both live and dead variables will
only alter the live ones. Information about whether or not an object is alive can be used for other
purposes, such as snap-target pruning[10], or simplifying displays.

There are many sources of objects to remove from the constraint system to reduce the size
of the problems which must be solved. One obvious source is the user, who, for example, might
want to freeze an object. It is also useful to cluster variables and allow the user to select whether
these classes should be enabled or not. For example, in a 3d modeling system, the constraint solver
might be used to control lighting, position the camera, and shape object geometry. However, the
user will often only want to control one of these at a time. It is therefore useful to allow disabling
entire classes of objects. This is especially important with constraints such as through-the-lens
camera controls[11] which can affect many different types of variables.

The are two reasons to automatically disable an object or variable. The constraints might
completely restrict an object (or a variable) from changing, or the object might not be connected to
anything which might cause it to move, such as the mouse. For these two questions, exact answers
are unavailable in general. It might require proving an arbitrarily hard geometric theorem, or doing
expensive numerical calculations. However, in practice one can remove many objects, although it
is difficult to guarantee the smallest possible set of active variables. In our systems, we have used
techniques such as dependency analysis and simple geometric theorem proving.

Freezing variables by removing them from the global state vector is what we call a cheap
constraint, that is, a constraint which can be enforced without adding to the set of equations which
must be solved. Notice that unlike most constraints, freezing will make things run faster since
it removes variables, rather than adding constraints. In certain cases, it is possible to translate
other constraints into freezes, for example, a constraint which nails a point on the object might
be expressible as a freeze if the point is computed directly from the values of variables. Another
type of cheap constraint can be created for equating two variables by having them share a single
location in the global state vector. This notion of "merging" is similar to that in [3].

6 Formulating Equations

Most of the methods for solving systems non-linear equations described in section 4 have similar
requirements for what the equations need to provide. They need to be able to evaluate the constraint
functions and their derivatives to form the linear systems which are solved. These evaluations
must be able to take advantage of sparsity in the resulting derivative matrices to achieve needed
performance in evaluations. Since these functions are defined in response to dynamic creation and
destruction of constraints, the creation of the functions themselves must be dynamic.

Constraint-based applications must be able to dynamically define functions. They need to
be able to rapidly evaluate these functions and their derivatives. These functions are built by
composing other functions together. At a low level, one might consider building functions out of
basic mathematical primitives such as addition; however, this composition occurs at higher levels

105

of abstraction in constraint systems too. For example, constraint are typically defined in terms of
points on objects. It is then the job of the objects to compute these point positions in terms of their
state variables. This provides an important layer of modularity: the constraints can be defined
independently of the objects.

A function can be represented as a directed acyclic graph2 with composed functions at the
nodes, and arcs representing composition. Our approach to providing function composition in
the dynamic setting of interactive applications is to provide a tools for managing these function
graph structures. In Snap-Together Math, function elements are "wired" together to make more
complicated functions.

Evaluating the values and derivatives of an expression involves traversing the graph. To
compute a value, a node requests the values from its predecessors and then performs its local
function on these results. The chain rule for derivatives provides a similar method for computing
derivatives. To compute the derivative of a node with respect to the global inputs, a node asks
its predecessors for their derivatives, and multiplies these intermediate results by the derivative of
its internal derivative matrix. This process is called automatic differentiation, and is superior to
building the global derivative matrix symbolically in most situations[13, 151.

At the leaves of the function graph are the variables over which the function is computed, the
state vector of the model. The state vector contains the parameters of the graphical objects which
make up the model. The state of the system is distributed among objects, however, numerical
algorithms require state to be gathered into a single global vector. The positions of variables in
this vector are significant as they determine which columns of the derivative matrices correspond
to which variables. It would be possible to keep variables in a large vector and have the objects
simply look in this larger structure for values. Such an approach, however, violates encapsulation
of objects and makes it more difficult to switch variables on and off. In our approach, variables from
object state vectors are gathered into a larger vector when needed. By selecting which variables
are gathered, it is simple and fast to switch among sets of variables.

We have implemented function composition and automatic differentiation in an object-oriented
tool called Snap-Together Math. Rather than requiring special graph node objects, it allows ap-
plication objects to mix in the ability to "speak mathematics." This permits application objects to
participate directly in calculations. They must only respond to a simple protocol. This simplifies
applications by reducing the need for special math objects which must be allocated and maintained.
Snap-Together Mathematics uses a specially designed sparse matrix representation and does exten-
sive caching. Snap Together Math is described in detail in [12], and a previous version is described
in [9].

7 Putting it Together
A wide variety of graphical applications might employ constraints. Any of these applications will
face the same issues previously described. Fortunately, the solutions proposed are general enough
to apply across many applications, and can be encapsulated into a toolkit to support a variety of
applications.

At a low level, any application which employs numerical constraint will gain leverage from a
library of mathematical structures and algorithms. Our mathematical toolkit provides support for
such things as vectors, matrices, and differential equations in an object oriented manner. It includes

21t is not a tree as common subexpressions might be shared.

106

several varieties of sparse matrices, and a variety of linear system, non-linear system, and ordinary
differential equation solvers.

Snap-Together Math, described in section 6 is built on top of the mathematical library. In
addition to the support for dynamically composing and rapidly evaluating functions, it also includes
interfaces differential and Newton-style solvers. Many applications, including Briar, have been
built with these tools.

The Bramble graphics toolkit, built on top of Snap-Together Math, aims to provide a framework
for building graphical applications with constraints. Previous toolkits, such as Garnet[18], Thinglab
I[17], and Mel(141, employ constraints to aid programmers in application development. Bramble,

in contrast, primarily aims to provide constraints as for user level services. Although, it does appear
that the the differential constraint techniques provided in Bramble simplify the task of building
graphical applications by helping separate manipulation from representation and facilitating general
purpose interaction techniques[7].

The addition of constraints to an interactive graphical application creates a variety of issues
which system builders must be concerned with. Many of these issues stem from interface concerns
and the need to handle non-linear relationships. Achieving the needed performance and dynam-
icness from the non-linear solvers requires careful attention. However, support for these can be
provided in a general purpose manner.

References
[1] Sherman R. Alpert. Graceful interaction with graphical constraints. IEEE Computer Graphics and

Applications, pages 82-91, March 1993.

[2] Eric Bier and Maureen Stone. Snap-dragging. Computer Graphics, 20(4):233-240, 1986. Proceedings
SIGGRAPH '86.

[3] Alan Boming. The programming language aspects of ThingLab, a constraint-oriented simulation
laboratory. ACM Transactions on Programming Languages and Systems, 3(4):353-387, 1981.

[4] Phillip Gill, Walter Murray, and Margret Wright. Practical Optimization. Academic Press, New York,
NY, 1981.

[5] Michael Gleicher. Briar - a constraint-based drawing program. In SIGGRAPH Video Review, vol-
ume 77, 1992. CHI '92 Formal Video Program.

[6] Michael Gleicher. Integrating constraints and direct manipulation. In Proceedings of the 1992
Symposium on Interactive 3D Graphics, pages 171-174, March 1992.

[71 Michael Gleicher. Building interactive systems with differential constraints, submitted for publication,
February 1993.

(8] Michael Gleicher and Andrew Witkin. Differential manipulation. Graphics Interface, pages 61-67,
June 1991.

[9] Michael Gleicher and Andrew Witkin. Snap together mathematics. In Edwin Blake and Peter
Weisskirchen, editors, Advances in Object Oriented Graphics 1: Proceedings of the 1990Eurographics
Workshop on Object Oriented Graphics. Springer Verlag, 1991. Also appears as CMU School of
Computer Science Technical Report CMU-CS-90-164.

107

[10] Michael Gleicher and Andrew Witkin. Drawing with constraints, submitted for publication, October
1992.

[111 Michael Gleicher and Andrew Witkin. Through-the-lens camera control. Computer Graphics,
26(2):331-340, July 1992. Proceedings Siggraph '92.

[12] Michael Gleicher and Andrew Witkin. Supporting numerical computations in interactive contexts. In
Tom Calvert, editor, Proceedings Graphics Interface, May 1993. To Appear.

[13] Andreas Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathematical
Programming: Recent Developments and Applications, pages 83-108. Kluwer Academic, 1989.

[14] Ralph D. Hill. A 2-d graphics system for multi-user interactive graphics based on obje -" and
constraints. In E. Blake and P. Weisskirchen, editors, Advances in Object Oriented Gr, 1:
Proceedings of the 1990 Eurographics Workshop on Object Oriented Graphics, pages 67-92. ger
Verlag, 1991.

[15] Masao Iri. History of automatic differentiation and rounding error estimation. In Andreas Griewank
and George Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation and
Application, pages 3-16. SIAM, January 1991.

[16] David Kurlander and Stephen Feiner. Inferring constraints from multiple snapshots. Technical Report
CUCS-008-91, Columbia University, May 1991.

[17] John Harold Maloney. Using Constraints for User Interface Construction. PhD thesis, University of
Washington, 1991. Appears as Computer Science Technical Report 91-08-12.

[18] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie, Ed Pervin,
Andrew Mickish, and Phillipe Marchal. Comprehensive support for graphical, highly-interactive user
interfaces: The garnet user interface development environment. IEEE Computer, November 1990.

[19] Yoshiko Nakamura. Advanced Robotics: Redundancy and Optimization. Addison-Wesley, 1991.

[20] John Platt. Constraint Methods for Neural Networks and Computer Graphics. PhD thesis, California
Institute of Technology, 1989.

[211 William Press, Brian Flannery, Saul Teukolsky, and William Vetterling. Numerical Recipes in C.
Cambridge University Press, Cambridge, England, 1986.

[22] Steven Sistare. Interaction techniques in constraint-based geometric modeling. In Proceedings Graph-
ics Interface '91, pages 85-92, June 1991.

[23] Mark Surles. Interactive modeling enhanced with constraints and physics - with applications in
molecular modeling. In Proceedings of the 1992 Symposium on Interactive Computer Graphics, pages
175-182, March 1992.

[24] Mark C. Surles. An algorithm for linear complexity for interactive, physically-based modelling of
large proteins. Computer Graphics, 26(2):221-230, 1992. Proceedings SIGGRAPH '92.

[251 Ivan Sutherland. Sketchpad: A Man Machine Graphical Communication System. PhD thesis, Mas-
sachusetts Institute of Technology, January 1963.

[26] Charles W. Wampler. Manipulator inverse kinematic solutions based on vector formulations and
damped least-squares method. IEEE Transactions on Systems, Man, and Cybernetics, 16(1):93-101,
January 1986.

108

Concurrent Constraint Programming at SICS
with the Andorra Kernel Language

(Extended Abstract)

Seif Haridi Sverker Janson
Joban Montelius Torkel Franzdn Per Brand

Kent Boortz Bj6rn Danielsson Bj6rn Carlson
Torbj6rn Keisu Dan Sahlin Thomas Sj61and

SICS, Box 1263, S-164 28 KISTA
Tel +46-8-752 1500, Fax +46-8-751 72 30

E-mail {seif, sverker } ©sics.se

Abstract

SICS is investigating a new generation of languages for symbolic processing that are based on the

paradigm of concurrent constraint programming. A wide range of pertinent topics are being studied. In
particular our efforts are devoted to producing a high quality programming environment based on the
Andorra Kernel Language (AKL), a general purpose concurrent constraint language.

1 Introduction

Concurrent constraint programming (CCP) is a powerful paradigm for programming with constraints while
being based on simple concepts [9, I1]. A set (or conjunction) of constraints, regarded as formulas in first-
order logic, forms a constraint store. A number of agents interact with the store using the two operations tell,
which adds a constraint to the store, and ask, which tests if the store either entails or disentails the asked con-
straint, otherwise waiting until it does. Telling and asking correspond to sending and receiving "messages",
thereby providing the basic means for communication and synchronisation for concurrent programming.

The Andorra Kernel Language (AKL) is a concurrent constraint programming language which generalises the
above functionality using a small set of powerful combinators [5]. The basic paradigm is still that of agents
communicating over a constraint store, but the combinators make possible also other readings, depending
on the context, where agents compute functions or relations, serve as user-defined constraints, or as objects
in object-oriented programs. A major point of AKL is that its paradigms can be combined. For example, it
is quite natural to have a reactive process- or object-oriented top-level in a program, with other components
performing constraint solving using don't know nondeterminism. The nondeterminism can be encapsulated,
so that it does not affect the process component.

Nondeterminism in AKL is controlled using stability, a generalisation of the Andorra principle, which has
proven its usefulness in the context of constraint programming (see e.g., [4]).

AKL offers a large potential for parallel execution, no less than that of logic programming languages and
dataflow languages [10]. Arbitrary parallel algorithms can be programmed in AKL, which is exemplified by
its ability to simulate a PRAM. This ability is given by ports, an extension of the language for process com-
munication, but in the spirit of concurrent constraint programming [6]. Pure functional and logic languages
do not have this ability.

SICS is currently developing a programming environment for A KL [7]. Among our goals are to: (1) develop
the necessary implementation technology for efficient (sequential and parallel) execution, (2) develop an

109

execution model which allows different constraint systems to be easily incorporated, (3) offer good interoper-
ability with conventional languages such as C, and (4) investigate large scale applications where combinations
of paradigms naturally occur.

Our efforts are divided into the following main lines of activities.

Language Design A language meeting our requirements has been designed: AKL. Possible extensions
and generalisations are being investigated. AKL features

"* Combinators for (parallel) composition, hiding, conditional choice, nondeterminate choice, committed
choice, and solution aggregation

"* Improved control and synchronisation, e.g., encapsulation of nondeterminism controlled by stability

"* Subsumption of Prolog, CLP, and committed-choice languages such as GHC, Parlog, and Strand

"* Support for concurrent object-oriented programming

"* Support for arbitrary parallel algorithms

Current and future work includes investigation of maximizing (minimising) combinators, and engines, which
provide an AKL computation with the ability to inspect and control another computation.

Implementation A prototype implementation of full AKL has been developed. Experiments indicate
that performance, using an optimising compiler being developed, will be no less than that of state of the art
implementations of Prolog (e.g., SICStus Prolog). The implementation consists of the following main parts.

"* A compiler (written in AKL) to an abstract machine

"* A threaded emulator (written in C)

"* A Prolog-style debugger

Current and future work includes developing an optimising compiler and a parallel implementation.

Constraint Systems A number of different constraint systems are being considered. The prototype
implementation is parameterised with constraint systems, which may be added as separate modules. The
following constraint systems are addressed. (See also the following section.)

"* Herbrand and rational trees serve as a foundation.

"* Feature trees have been implemented.

"* Finite domains are being investigated.

"* Complete Hlerbrand (closed under logical combinators) is being designed.

Current work also includes the definition of a generic constraint interface.

Formal Aspects Soundness and completeness results for a logical interpretation of AKL have been shown
and a proof system for programs is being investigated.

Analysis and Transformation Program analysis by abstract interpretation and program transformation
by partial evaluation are studied, both with the aim to improve performance.

In the remainder of this paper a short section will first summarise the constraint systems that have been
considered, and the rest is devoted to an explanation of AKL, since it is assumed that this language is largely
unknown to the present readership.

110

2 Constraint Systems

A constraint system for AKL may in principle be any first-order theory, closed under conjunction and
existential quantification, for which decision procedures for satsifiability and entailment can be provided. Of
course, a large body of work on practically motivated constraint systems exists. We have so far considered
Herbrand and rational trees, feature trees, finite domains, and complete Herbrand. This investigation will
surely be extended to other systems in the future.

2.1 Herbrand and Rational Trees

Herbrand is a theory of equality of terms (the Clark equality theory). The difference between Herbrand and
rational trees is that the latter provides solutions to constraints of the form 'X = f(X)'. Traditionally, logic
programming is based on Herbrand or rational trees.

For example 'T = tree(l,L,R)' and 'L = [1,2,31S)', as may be found in Prolog programs, are Herbrand
constraints.

2.2 Feature Trees

Feature trees are formed from constraints of the form 'X f Y', where 'f' is a feature, a feature being anything
which may serve as a label [1]. Intuitively, the feature constraint associates with X a "property" f having
the value Y, thus regarding X as a map from properties to values.

2.3 Finite Domains

Finite domain constraints encodes efficiently properties for finite sets [12, 13].

For example, 'X in L..5' restricts X to be in the range 1 to 5, 'Z in 4..8" correspondingly for Z, and by adding
'X > Z', we may conclude 'X = 5' and 'Z = 4'.

2.4 Complete Herbrand

Complete Herbrand is Herbrand closed under the usual (first-order) logical combinators [8]. This makes the
decision procedures for satisfiability and entailment considerably more complex, while offering, among other
things, the potential for a more powerful treatment of negation.

3 Language Design

In this section AKL is introduced step by step, introducing one language construct at a time, also explaining
its behaviour. There is no space for a formal definition of the computation model (even though it is fairly
concise). An explanation of solution aggregates has also been omitted for reasons of space.

For a formal computation model see [5], and [3] which also defines the logical interpretation. Observe that
these are based on a clausal syntax which is equivalent to the current combinator syntax. Both are available
in the AKL programming system.

3.1 Basic Constructs

The agents of concurrent constraint programming correspond to statements being executed concurrently.

Constraints, as discussed in the previous section, appear as atomic statements known as constraint atoms
(or just constraints).

A program atom of the form

IIl

(name)(XI, ... , X,.)

is a defined agent. For example,

plus(X, Y, Z)

is a (plus/3) atom.

The behaviour of atoms is given by (agent) definitions of the form

(name)(XI, ... , X.) := (statement).

The variables X1 , ... , X, must be different. During execution, any atom matching the left hand side will
be replaced by the statement on the right hand side. For example.

plus(X, Y, Z) := Z = X + Y.

is a definition (of plus/3).

A composition statement of the form

(statement), ... , (statement)

builds a composite agent from a number of agents. Its behaviour is to replace itself with the concurrently
executing agents corresponding to its components.

A hiding statement of the form

X1, . .. , X : (statement)

introduces variables with local scope. The behaviour of a hiding statement is to replace itself with its
component statement, in which the variables X1, ... , X,, have been replaced by new variables.

The conditional choice statement

((statement) - (statement)

(statement) - (statement))

is used to express conditional execution. Its components are called (guarded) clauses and the components of
a clause guard and body. A clause may be enclosed in hiding.

The behaviour of a conditional choice statement is as follows. Its guards are executed with corresponding
local constraint stores. If the union of a local store with the external stores is unsatisfiable, the guard
fails, and the corresponding clause is deleted. If all clauses are deleted, the choice statement fails. If the
first (remaining) guard is successfully reduced to a store which is entailed by the union of external stores,
the conditional choice statement is replaced with the composition of the constraints with the body of the
corresponding clause.

If a variable Y is hidden in a clause, then, when testing for entailment, the local constraint store is preceded
by the expression 'for some Y' (or logically, '3Y'). For example, in

X = f(a), (Y : X = f(Y) -- q(Y))

the asked constraint is '3Y (X = f(Y))' ('for some Y, X = f(Y)'), which is entailed, since there exists a Y
(namely 'a') such that X = f(Y) is entailed.

It is now time for a first small example, illustrating the nature of concurrent computation in AKL. The
following definitions will create a list of numbers, and add together a list of numbers, respectively.

112

list(N, L)
(N=0-.L=fl

LI N > 0 -- L = [NILI], list(N - I, LI)).
sum(L, N) :=

(L=O--N=0

M, LI, NI : L = [MILl] -- sum(Ll, NI), N = NI + M).

The following computation is possible. In the examples, computations will be shown by performing rewriting
steps on the state (or configuration) at hand, unfolding definitions and substituting values for variables, etc.,
where appropriate, which should be intuitive. In this example we avoid details by showing only the relevant
atoms and the collection of constraints on the output variable N. Intermediate computation steps are skipped.
Thus,

list(3, L), sum(L, N)

is rewritten to

list(2, LI), sum((31L1], N)

by unfolding the list atom, executing the choice statement, and substituting values for variables according
to equality constraints. This result may in its turn be rewritten to

list(l, L2), sum([2lL2], Ni), N = 3 + NI

by similar manipulations of the list and sum atoms. Further possible states are

list(0, L3), sum([11L3], N2), N = 5 + N2
sum(f, N3). N = 6 + N3
N=6

with final state N = 6.

The list/2 agent produces a list, and the sum/2 agent is there to consume its parts as soon as they are
created. If the tail of the list, being consumed by the sum/2 call is unconstrained, the sum/2 agent will wait
for it to be produced (in this case by the list/2 agent).

The simple set of constructs introduced so far is a fairly complete programming language. quite comparable
in expressive power to, e.g., functional programming languages.

In the following sections, we will introduce constructs that address the specific needs of important program-
ming paradigms, such as processes and process communication, object-oriented programming, relational
programming, and constraint satisfaction. In particular, we will need the ability to choose between alterna-
tive computations in a manner more flexible than that provided by conditional choice.

3.2 Don't Know Nondeterminism

Many problems, especially frequent in the field of Artifical Intelligence, and also found elsewhere, e.g., in
operations research, are currently solvable only by resorting to some form of search. Many of these admit
very concise solutions if the programming language abstracts away the details of search by providing don't
know nondeterminism.

For this, AKL provides the nondeterminate choice statement.

((statement) ? (statement)

(statement) ? (statement)

113

The symbol '?' is read wait. The statement is otherwise like the conditional choice statement.

The behaviour of a nondeterminate choice statement is as follows. Its guards are executed with corresponding
local constiaint stores. If the union of a local store with the external stores is unsatisfiable, the guard fails,
and the corresponding clause is deleted. If all clauses are deleted, the choice statement fails. If only one clause
remains, and its guard is successfully reduced to a store which is consistent with the union of external stores,
the choice statement is said to be determinate. Then, the nondeterminate choice statement is replaced with
the composition of the constraints with the body of the corresponding clause. Otherwise, if there is more
than one clause left, the choice statement is said to be nondeterminale, and it will wait. Subsequent telling
of other agents may make it determinate. If eventually a state is reached in which no other computation
step is possible, each of the remaining clauses may be tried in different copies of the state. The alternative
computation paths are explored concurrently.

Let us first consider a very simple example, an agent that accepts either of the constants a or b, and then
does nothing.

p(X) :=
(X = a ? true

X = b? true).

The interesting thing happens when the agent p is called with an unconstrained variable as an argument.
That is, we expect it to produce output. Let us call p together with an agent q examining the output of p.

q(X, Y) :=
(X = a--Y= I
;true-- Y= 0).

Then the following is one possible computation starting from

p(X), q(X, Y)

First p and q are both unfolded.

(X =a? true ;X = b? true),
(X = a - Y = 1 ; true - Y = 0)

At this point in the computation, the nondeterminate choice statement is nondeterminate, and the conditional
choice statement cannot establish the truth or falsity of its condition. The computation can now only proceed
by trying the clauses of the nondeterminate choice in different copies of the computation state. Thus.

X = a,(X = a -- Y = 1 true -* Y = 0)
Y=I

and

X = b, (X = a --- Y = I ; true -- Y = 0)
Y=O

are the two possible computations. Observe that the nondeterminate alternatives are ordered in the order
of the clauses in the nondeterminate choice statement.

The constructs introduced so far give us (constraint) logic programming in addition to functional program-
ming. Nondeterminism is introduced only lazily. Propagation of known constraints is always given priority.
This simple functionality gives us means to solve many constraint satisfaction problems efficiently [4].

Up to this point, the constructs introduced belong to the strictly logical subset of AKL, which has a straight-
forward interpretation in first-order logic both in terms of success and failure.

114

3.3 Don't Care Nondeterminism

In concurrent programming, processes should be able to react to incoming communication from different
sources. In constraint programming, constraint propagating agents should be able to react to different
conditions. Both of these cases can be expressed as a number of possibly non-exclusive conditions with
corresponding branches. If one condition is satisfied, its branch is chosen.

For this, AKL provides the conmitted choice statement

((statement) I (statement)

(statement) j astatementn)

The symbol 'T' is read commit. The statement is otherwise like the conditional choice statement.

The behaviour of a committed choice statement is as follows. Its guards are executed with corresponding
local constraint stores. If the union of a local store with the external stores is unsatisfiable, the guard fails,
and the corresponding clause is deleted. If all clauses are deleted, the choice statement fails. If any of
the (remaining) guards is successfully reduced to a store which is entailed by the union of external stores,
the committed choice statement is replaced with the composition of the constraints with the body of the
corresponding clause.

List merging may now be expressed as follows, as an example of an agent receiving input from two different
sources.

merge(X, Y, Z)
(X 0 fl Z =Y

Y 0 1Z =X
E, XI, ZI X = [EIXI] I Z = [EIZI], merge(X1, Y, Z1)
E, YI, ZI Y = [EIYII I Z = [EIZI], merge(X, YI, ZI)).

A merge agent can react as soon as either X or Y is given a value. In the last two guarded statements.
hiding introduces variables that are used for "matching- in the guard, as discussed above. These variables
are constrained to be equal to the corresponding list components.

3.4 Encapsulated Computations

To avoid unwanted interactions between don't know nondeterministic and process-oriented parts of a pro-
gram, the nondeterministic part can be encapsulated in a statement that hides nondeterminism. Nondeter-
minism is encapsulated in the guard of a conditional or committed choice and in the solution aggregation
constructs provided by AKL.

The scope of don't know nondeterminism in a guard is limited to its corresponding clause. New alternative
computations for a guard will be introduced as new alternative clauses. This will be illustrated using the
following simple nondeterminate agent.

or(X, Y) :=
(X = I ? true
;Y= 1? true).

Let us start with the statement

(or(X, Y) I q)

The or atom is unfolded, giving

((X= 1 ? true Y= 1 ? true) Iq)

115

Since no other step is possible, we may try the alternatives of the nondeterminate choice iii different copies
of the closest enclosing clause, which is duplicated as follows.

(X=-1 q

Y =I q)

Other choice statements are handled analogously.

Before leaving the subject of don't know nondeterminism in guards, it should be clarified exactly when
alternatives may be tried. A (possibly local) state with agents and their store is (locally) stable if no
computation step other than splitting a nondeterminate choice is possible, and no such computation step
can be made possible by adding constraints to external constraint stores (if any). Splitting may then be
applied to the leftmost possible nondeterminate choice in a stable state.

3.5 Ports for Concurrent Objects

The combinators mentioned above are adequate to model concurrent objects in a style known from concurrent
logic programming. A standard example of an object definition is a bank account providing services such as
withdrawals, deposits, etc.

make-bank-account(S) := bank-account(S,O).

bank-account(Ms, State)
(Ms =0 -" true

A,R Ms = [withdraw(A)IR] -
bank-account(R, A-State)

A,R : Ms = [deposit(A)jR] -
bank.account(R, A+State)

A,R : Ms = [balance(A)IR] -
A = State, bank.account(R, State)).

However it known from experience that communication between objects using streams and merger agents is
very awkward.

In AKL we use another communication medium between objects. called ports. A port is a binary constraint
on a bag (a multiset) of messages and a corresponding stream of these messages. It simply states that they
contain the same messages in any order. A bag connected to a stream by a port is usually identified with the
port, and is referred to as a port. The open-port(PS) operation relates a bag P to a stream S, and connects
them through a port.

The stream S will typically be connected to an object of the above form. Instead of using the stream to
access the object, we will send messages by adding them to the port. The constraint send(P,M) sends the
message M to the port P. To satisfy the port constraint, a message sent to a port will immediately be added
to its associated stream, first come first served. In this sense the port constraints have the same status as the
committed choice statement by committing to a single arbitrary order of messages in the stream associated
with the port constraint.

When a port is no longer referenced from other parts of the computation state, when it becomes garbage,
it is assumed that it contains no more messages, and its associated stream is automatically closed. When
the stream is closed, any object consuming it is thereby notified that there are no more clients requesting
its services.

A simple example follows.

open-port(P,S), send(P,a),send(Pb)

yields

P = <a port>, S=[a,b]

116

Ports solve a number of problems that are implicit in the use of stream. Here is a summary. for a detailed
description of these see [6].

"* Several clients can access the same objects without the need to explicitly merge messages into a single
stream.

"* Objects can be embedded freely in other data structures provided by AKL.

"* Message sending conceptually takes constant time in the computational model of AKL.

"* Automatically closing the stream associated to a port, when the port is no longer accessible, provides
a good method for garbage collecting concurrent objects.

3.6 Ports for State and Parallel Algorithms

Ports provide AKL with means to incorporate various types of mutable data structures, such as arrays and
hashtables. These structures are modelled in AKL as objects connected to a port, but may be implemented
very efficiently at a lower level.

For example. a memory cell can be modelled in AKL as an object connected to a port that accepts the
messages read(V), write(V), and exchange(VI,V2), to read a value V, to write a value V. and to atoanically
exchange the current value VI with V2, respectivley.

This ability allows us to model a parallel random access memory, or parallel access to hash tables in the lan-
guage, and as a consequence allows us to write many parallel algorithms that cannot be efficiently expressed
in pure functional and concurrent logic languages. The following is a typical example.

First we define a shared memory as follows.

memory(M) :=
M = m(Cl ... , Cn),
cell(C1) cell(Cn).

where cell/) agents are specified 6s above. M becomes a tuple of ports to cells.

The problem is to, given a binary tree in which the leaves contain numbers in the range 1..., ii, count the
occurrences of each number by a parallel algorithm (as parallel "as possible"). In our solution the occurrences
are collected in a table of counters, with indices in the given range. Assume that the memory agent defined
above defines a memory of this size. The program traverses the tree, incrementing the counter corresponding
to each number found. To guarantee that all nodes have been counted, the program performs the computation
in a guard, making the table visible to other agents only when the computation has completed.

histogram(T, M) :=
memory(M), count(T, M) ? true.

count(Tree, Table) :=
(I,C,K : Tree = leaf(l)

arg(l, M, C), send(exchange(K,K+l),C)
L,R - Tree = node(L,R) -

count (L,M),count(R,M)).

This example is due to [2].

4 Concluding Remarks

Current and planned topics at SICS include efficient sequential and parallel implementations parametrised
with user-definable constraint systems (in C), implementations of various constraint systems, extensions of

117

the basic framework, such as engines for meta-level programming, program analysis and program transfor-
mation, inter-operability with conventional languages and operating systems, and investigation of formal
properties.

An experimental AKL programmingsystem is available from SICS for research purposes. The system consists
of a compiler (in AKL) from AKL to an abstract machine, an emulator written in C (including a copying
garbage collector), and a Prolog style debugger.

References

[1] Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system for logic
programming with entailment. In Proceedings of the International Conference on Fifth Generation
Computer Systems 1992. ICOT, 1992.

[2] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-structures: extending a parallel, non-strict, functional
language with state. In Functional Programming and Computer Architecture '91, 1991.

[3) Torkel Franz6n. Logical aspects of the Andorra Kernel Language. SICS Research Report R91:12,
Swedish Institute of Computer Science, October 1991.

[4) Steve Gregory and Rong Yang. Parallel constraint solving in Andorra-l. In Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems 1992. ICOT, 1992.

[5] Sverker Janson and Seif Haridi. Programming paradigms of the Andorra Kernel Language. In Logic
Programming: Proceedings of the 1991 International Symposium. MIT Press, 1991.

[6] Sverker Janson, Seif Haridi, and Johan Montelius. Research Directions in Concurrent Object-Oriented
Programming, chapter Ports for Objects in Concurrent Logic Programs. MIT Press, 1993. To appear.

[7) Sverker Janson and Johan Montelius. The design of the AKL/PS 0.0 prototype implementation of the
Andorra Kernel Language. ESPRIT deliverable, EP 2471 (PEPMA), Swedish Institute of Computer
Science, 1992.

[8) Torbj6rn Keisu. Hcl. SICS research report, Swedish Institute of Computer Science, 1993. Fortcoming.

[9] Michael J. Maher. Logic semantics for a class of committed choice programs. In Logic Programming:
Proceedings of the Fourth International Conference. MIT Press, 1987.

[10] Remco Moolenaar and Bart Demoen. A parallel implementation of AKL. CW-report, Department of
Computer Science, Katholieke Universiteit Leuven, 1991.

(11] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-Mellon
University, January 1990. To be published by MIT Press.

[12) Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[13) Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Constraint processing in cc(FD). Technical
report, Computer Science Department, Brown University, 1991.

118

Fourier's Elimination: Which to Choose ?

Jean-Louis Imbert'

G.I.A. Parc Scientifique et Technologique de Luminy
163, Avenue de Luminy, case 901

F-13288 Marseille cedex 9 (France)
Email: imbert~gia.univ-mrs.fr

Abstract

Variable elimination is of major interest for Constraint Logic Programming Languages [JaLa86],
and Constraint Query Languages [KKR90], where we would like to eliminate auxiliary variables
introduced during the execution of a program. This elimination is always suitable for final
results. It can also increase the efficiency of the intermediary processes. We focus on linear
inequalities of the form ax < b, where a denotes a n-real vector, r an n-vector of variables,
b a real number, and the juxtaposition ax denotes the inner product. In this paper, we will
focus exclusively on methods related to Fourier's elimination [Fourie]. Our aim is to make
visible the links between the different contributions of S.N. Cernikov [Cern63], D.A. Kolher
(Kohl67], R.J. Duflin [Duff74], JL.J. Imbert [Imbe9O]. and J.Jaffar, M.J. Maher, P.J. Stuckey
and R.H.C. Yap [JMSY92]. This study, which has never been done before, is of great interest for
languages such as CHIP, CLP(R) and Prolog Ill. We show that the three methods proposed by
Cernikov. Kolher and Imbert produce exactly the same output (without more or less redundant
inequations), up to multiplying by a non-zero positive scalar. We present and discuss the
improvements of ('ernikov, Duffin, Imbert and Jaffar and al, and propose a new improvement.
We give a short analysis of the complexity of the main improvements and discuss the choice of
the method in relation to the problem at hand. We propose a pattern algorithm. Finally, we
conclude with a comparative assessment through a brief example and a few remarks.

Keywords: Variable Elimination, Quantifier Elimination, Projection, Constraint
Logic Programming, Output.

1 Introduction

Variable elimination is of major interest for Constraint Logic Programming Languages [JaLa86], and Con-
straint Query Languages [KKR90], where we would like to eliminate auxiliary variables introduced during
the execution of a program. This elimination is always suitable for final results. It can also increase the
efficiency of the intermediary processes. We focus on linear inequalities of the form ax < b, where a denotes a
n-real vector, x an n-vector of variables, b a real number, and the juxtaposition az denotes the inner product.
This type of constraint occurs in CLP languages such as CHIP [DVSA88, VHen89], CLP(R) [JaMi87], and
Prolog Ill [Colm87, Colm90. A constraint system is a conjunction of constraints. Using matrix notation, an
inequation system (ai: <b i I, ...I m} can be written Az < b, where A denotes an (m x n)-matrix, and

b an m-real vector. The main problem we face during the variable elimination process in linear inequation
systems, is the size of the output. It is doubly exponential. Variable elimination in inequation systems
has been extensively investigated. Among these investigations one can cite the C. and JL. Lassez method
(LaLa9l], which globally eliminates in one single operation the set of unwanted variables. It is based on

I.Supported by ACCLAIM Project.

119

semantic properties of projection and of convex hull. It makes it possible to obtain approximations. Nev-
ertheless, so far, mainly methods derived from Fourier's elimination [Fourie] are used in CLP languages.
For example, the programming language CLP(R) outputs its results after eliminating undesirable variables
using a method related to Fourier [JMSY92]. This kind of method carries out an incremental elimination of
variables, one after another. The major problem comes from the size of intermediary systems.

In this paper, our interest will be exclusively focused on methods derived from Fourier's elimination.
Among the improvements in these eliminations are the contributions of S.N. Cernikov [Cern63], D.A. Kolher
[Kohl17], R.J. Duffin [Dufl74), JL.J. Imbert [Imbe9O], and 3 .Jaffar, M.J. Maher, P.J. Stuckey and R.H.C. Yap
[JMSY92]. There are basically three approaches represented in these methods: the general algebraic approach
of ternikov, the matricial algebraic approach of Kohler, and the graph, or more specifically, the tree approach
of [Imbe9O]. These trees reflect the way in which the new inequations are constructed as the elimination
proceeds. This last approach shows clearly that the methods proposed by Cernikov, Kohler and Imbert are
equivalent. This is far from being in evidence as Kohler remarks (see Section 4).

The aim of this paper is to make visible the links between these different above-mentioned contributions.
This study, which has not been done before, is of great interest. We show that the three methods proposed by
ternikov, Kolber and Imbert produce exactly the same output (without more or less redundant inequations),
up to multiplying by a non-zero positive scalar. We present and discuss improvements by (Cernikov, Duffin,
Imbert and Jaffar and al, and propose a new improvement. We give a short analysis of the complexity of the
main improvements and discuss the choice of the method depending on the problem at hand. We propose
a pattern algorithm. Finally, we conclude with a comparative assessment using a brief example and a few
remarks.

The rest of this paper is organized in the following way: Section 2 presents basic concepts necessary for
understanding the other Sections. In Section 3, we introduce the parts of the initial system (called minimal
parts) which can produce a relevant final inequation, and present the ('ernikov-Fourier algorithm [Cern63].
In Section 4, we introduce the characterization of minimal parts and give the Kohler-Fourier algorithm
[Kohl67]. Moreover, in this Section, we show that the algorithms of Cernikov-Fourier and Kohler-Fourier
produce exactly the same final system (without more or less redundant inequations), up to multiplying each
inequation by a non-zero positive scalar. Section 5. successively presents improvements by C(ernikov, Duffin,
imbert and Jaffar and all, and introduces some new precisions about redundancy. Furthermore. we show
(subsection 5.4) a new improvement of the (•'ernikov minimal part method, dividing in half the average
number of comparisons. In Section 6 we discuss the complexity of the various improvement contributions
and the choice between the minimal part method ((Cernikov) and the matricial method (Kohler). Then, we
give a pattern variable elimination algorithm for inequation systems. Section 7 compares through a brief
example, the contributions of (,'ernikov, Kohler and Imbert [Imbe9OJ. Finally, in Section 8, we conclude with
a few remarks.

2 Preliminaries

Let z denote the vector (a,,..., ,). Let x' be the vector of variables to be retained, and let r" be the
vector of variables to be eliminated. We will abuse the language by writing r = (r', z"). In the same way,
a = (al, . . . , a.) denotes a real or rational vector, and a will be written (a', a"), respective of the subscripts
of z' and x". The inequation system Ax < b can then be written A','+A"x'" < b. To eliminate the variables
of x", the problem at hand is to find a system Cx' < d as concise as possible for which, if (a', a") is in the
solution set of A'a' + A"a" < b, then a' is in the solution set of Ca' < d, and reciprocally, if a' is a solution
of system Ca' < d, then there is a" such that (a', a") is a solution of system A'x' + A"x" < b. We will say
that Cz' < d and A'x' + A"x" < b are equivalent on a'. It can be shown that each inequation of the final
system Ca' < d is a linear combinatory with positive coefficients of inequations of initial system (this is a
consequence of Fourier's elimination).

120

2.1 Fourier's Algorithm

Let a1z < b, and a2 Z < b2 be two inequations, and let a,., and a2,1 be the coefficients of the variable X,
respectively in the first and second inequations. Let us assume that a,,, > 0 and a2, 1 < 0. Then,

- a2,1(ali) + al,l(a2r) 5 -a 2,jbl + al,lb2 (1)

is a consequence of the two initial inequations, and x, does not occur in it. Let Ax < b be an inequation
system, and V the variables which occur in it. Let Ax < b be the system obtained from Ax < b, by removing
all inequations which zx occurs in, and replacing them with all the inequations of type (1) above, we can
construct from any pair of removed inequations. It can be proved that Ax < b and Ax < b are equivalent
on V - {f r). This operation must be successively repeated for each variable to be eliminated.

2.2 Redundancy and size of the intermediary systems

A drawback of Fourier's elimination is the production of redundancies which overwhelms the system. It is
here that the improvements of S.N. (Nernikov [Cern63], D.A. Kolher [Kohl67], R.J. Duffin [Dufl74], JL.J.
Imbert [lmbe90], and J.Jaffar, M.J. Maher, P.J. Stuckey and R.H.C. Yap [JMSY92], come. One way to
mitigate this drawback is to associate each inequation with information to memorize the way in which it
has been produced. This information deals with: the inequations of the initial system used to produce
this inequation, the variables which are effectively eliminated during pair gathering, and, finally, the other
variables eliminated during the previous variable eliminations. Some relations between the quantities of
elements occuring in these three kinds of variables, make it possible to detect whether a new inequation is
redundant or not.

Another drawback of Fourier's method is the large increase in the number of constraints in the interme-
diary systems. One of the main reasons is that the historic method quickly detects most of the redundancies,
but it does not detect all of them (only those due to the construction, i.e. due to A"x", but not those due
to AY:'). Besides, redundancies have a tendency to spread as they multiply very quickly. The other reason
concerns the nature of Fourier's method: independently of the redundancies, the number of inequations has
a tendency to increase, before to decrease when few variables remain to be eliminated. A remedy for the first
cause is to use a general method of redundancy removing [Telg8l, KLTZ83. LHMA89, ImVH92a]. As for the
second cause, which is structural, it cannot be suppressed. Other methods are necessary for remedying this
inconvenience. Numerous methods have been proposed, including one already cited and set out in [LaLa9l]
which is particularly interesting as it creates a minimal representation of the final system and does not use
intermediary systems.

2.3 Some results

Let S be the linear inequation system {a, r< bi,.. . a,,z < b,,). It is known (Farkas [Shri86, p87-90]), that
the inequation er < d is a consequence of S if and only if there exist positive coefficients (_! 0) ao , a i ,(tn,

such that c = a, al +.. .+anan and d = Oo+ albi +.. .+ Onbn . The inequation cr < d is said to be an affine
combinatory with positive coefficients of inequations of S. A linear combinatory is an affine combinatory
such that ao = 0. Hence, an inequation of S is redundant in S if and only if it is an affine combinatory
with positive coefficients of the other inequations of S. It is strongly redundant if for at least one affine
combinatory Go i 0, weakly redundant in other cases.

Lastly, let us notice that, from Fourier's elimination, each inequation obtained after variable elimination
in an inequation system S, is a linear combinatory with positive coefficients of the inequations of S.

3 Minimal subset

As a result of Fourier's elimination, each inequation of the final system Cr' < d is a linear combinatory with
non-negative coefficients of inequations of the initial system A':' + A"r" < b. Hence, we look at the vectors
w = (w, ... , w,..) such that wA" = 0". (0" denotes the vector a" with all its components equal to zero.

The vector a" has been introduced in Section 2. We will abuse the language by writing 0 instead of 0" if
there is no ambiguity. In the same way, we will write 0 instead of 0'). A vector w, is less than a vector W2

121

(written wo _< w2), if each component of w, is less than its corresponding component of W'2 . Let F be the
cone of non-negative solutions 0 < u, of wA" = 0. From the last remark of Section 2.3, it is evident that:

Lemma 1 The system {wA'z' < wb I u' E F) is equivalent to the final system Cx' < d.

However, this system is unnecessarily large. According to [Cern63], it is sufficient to take a base of F. A
base of F is an irreducible subset of elements of F which generate F. Indeed, on the one hand, if w, and W2

are two elements of F identical up to multiplying by a non-zero scalar, then the inequations wA'z' < wlb
and w2A'x' < W2 b are equivalent. On the other hand, from [Cern60, Section 3 p 297-298] it suffices that
the number of non-zero components of w is less than the number of non-zero components of Z" plus 1. As
a matter of fact, according to [Cern63], it is sufficient to take a base of F. A base of F is an irreducible
subset of elements of F which generates F. Here, irreductible is for inclusion. Since F is a cone, a vector is
generated by other vectors if it is a linear combinatory with non-negative coefficients of these other vectors.

Two elements of F are essentially different if they do not differ from one another by a positive scalar
multiple. A minimal vector is a non-zero vector of F such that the only essentially different vector of F less
than itself, is the zero-vector. Let G be a base of essentially different minimal vectors of F. Then, using
lemma 1, it is evident that:

Theorem 2 The systems Cx' < d and {wA'Y' < wb I w E G} are equivalent.

Corollary 3 If w, and w2 are two elements of G, the zero-components of which coincide with each other,
then w1 = w2 .

Proof If w1 9 W2 , there is a linear combinatory of these two vectors which produces a non-zero element of
F less than each of them. Indeed, it can be found k > 0, such that kwi _< w2. Then, continuously increase
k with kw, <5 U2, until at least one non-zero component of kw1 is equal to the corresponding component of
W2. Then, U,2 - kw, is non-zero positive and is in F. So, w, and W2 are not minimal, and then are not in
G. 0

Each minimal vector of F or G, is associated with an inequation subset of AY' + A"'" < b (Lhe lines
of the initial subset corresponding to the non-zero components of the minimal vector). This subset is said
to be minimal for x". or simply minimal if there is no ambiguity.

jFrom [Cern6O, section 3 p 297-298] and [Cern63]. theorem 2 can be used at each step in Fourier's
elimination, yielding a correct algorithm. Then, for each inequation i, we memorize the subset Hi of initial
inequations (i.e. of initial system Az < b) which produced i. Hi is called a historical subset. Clearly, for
each initial inequation i, Hi = {i). In Fourier's algorithm, only inequations with minimal historical subsets
are retained. An algorithm using these properties is given in Figure 1.

Notice that the historical subset of the new inequation, and the comparison can be processed before
producing the inequation. Hence, the inequation is not created if at least one existing historical subset is
included in its historical subset.

4 Characterization of minimal subsets

The main problem we face in the previous method is that the historical subset of each inequation of Cx' < d
must be compared to the historical subset of every other inequation of Cx' < d. The following theorem
makes it possible to overcome this drawback. In the following, the notion of rank of vector space, affine
space, vector system and matrix is assumed known.

Theorem 4 Let A'Y' + A"Y" < b be an inequation system. Let F be the cone defined in Section 3. An
element w of F is minimal iff the sub-matrix A" formed from lines of A" related to non-zero components of
w has as its rank, the number of lines of A" minus 1.

Proof Since wA" = 0, this rank is at most the number of lines of A" minus 1. If it is smaller, there exists
any vector v of F with at least one non-zero positive component, such that, for each non-zero component
of v, the corresponding component of w is non-zero, and such that vA" = 0. Without loss of generality, v

122

Input: Ax 5 b, a system of inequations.
Assume that x = (z',z"), where z" = (Za ..1.,:Z) is the vector of variables to be
eliminated.

Output: A system Cr' < d equivalent to Ax < b on z'
begin

1. At the start, the inequation system S is equal to At < b.
2. For zx being successively the variables -', ... ,zk,

2.1. Remove from S, each inequation with non-zero coefficient of zj.
2.2. For each pair of removed inequations aIz :< b, and a2Z < b2 , with components

aj,j and aj,2 of zj respectively positive and negative, insert the inequation
aj,la2Z - aj,2axz < aj, lb2 - aj, 2b1 in S. If the historical subsets of the
inequations of the pair are H, and H2 respectively, then, the historical subset
of the new inequation is H, U H 2.

2.3. Remove from S each inequation with a historical subset including at least one
historical subset of the remaining inequations.

3. Return the system 5 which is then of the form C:' < d.
end

Figure 1: C.'ernikov-Fourier's Algorithm

Input: Ax < b, an inequation system.
Assume that x = (z',x"), where x" = (Z: .1 . Xk) is the vector of variables to be
eliminated.

Output: A system Cx' < d equivalent to At < b on r"
begin

1. we begin with the system of inequations S equal to At < b.
2. For xj being successively the variables X1 -,

2.1. Remove from S, each inequation with a non-zero coefficient of xj.
2.2. For each pair of removed inequations a1 : < b, and a2" < b2 . with compo-

nents aj,1 and aj,2 of zj respectively positive and negative.
2.2.1 If the historical subsets of the inequations of the pair are H1 and

H2 respectively, then, the historical subset of the new inequation
is Hi U H2.

2.2.2 If the rank of A" is its number of lines minus 1, insert in S the
new inequation aj,1 a2 X - aj,2axz < aj lb2 - aj, 2bi.

3. Return the system S which is then of the form Cx' < d.
end

Figure 2: Kohler-Fourier's Algorithm

can be assumed less than w, with equality for at least one non-zero component (if necessary, multiply by an
appropriate scalar). As a result, w - v is a non-zero vector of F, then w is not minimal. 0

In fact, (ernikov defines a minimal vector (which he calls fundamental element) as a vector w for which
the rank of the matrix A" is the number of its lines minus 1 [Cern63, p 1520]. He then says that the maximal
systems of essentially different minimal elements of F are identical with its bases. Kohler used this result in
Fourier's elimination algorithm. In the algorithm of Figure 2, if H is the historical subset associated with an
inequation, A" will denote the matrix formed from lines and columns of A" which respectively correspond
to elements of H and to columns of zl ,... xj.

Note that, contrary to the Cernikov-Fourier Algorithm, the detection of minimal subsets is performed
at the time of the creation of the new inequations. That is to say, whether a subset is minimal or not is
detected at the time of its creation. This is the opposite of (,ernikov-Fourier Algorithm, in which some

123

inequations are temporarily kept until a new inequation with a smaller historical subset is created. As a
result, time used to create non-retained inequations, and an unnegligible place used for intermediary storage
can be saved.

However, it can be asked whether this method detects when the same inequation can be obtained from
the same minimal subset in more than one way. Kohler [Kohl67, p 23]: "1 have been unable to prove that
we can discount the possibility of the Fourier-Motzkin Method generating more than one ertreme vector from
the same half-line. Should this occur we need only keep one of them". The tree approach of [lmbe90] makes
it possible to give a simple answer to this question using its unicity theorem (p 121). This theorem can be
translated as follows:

Theorem 5 [Unicity theorem] For each minimal subset, Fourier's algorithm, modified by (.ernikov or
Kohler, can produce only one inequation and only in one way.

Corollary 6 The algorithms Nernikov-Fourier and Kohler-Fourier rigorously produce the same final system
without more or less redundant inequation.

Proof It is an immediate consequence of the previous theorem. 0

Remark : Theorem 5 is valid only if, at each Fourier step, each inequation associated with a non-minimal
historical subset is discarded. Otherwise uniqueness is not guaranteed and the (ernikov method is preferred.

Another very interesting result shown in (Imbe90] is the independence of the order in which the variables
are eliminated:

Theorem 7 Whatever the order in which the variables are eliminated, the (ernikov-Fourier algorithm or
the Kohler-Fourier algorithm rigorously produce the same final system, without more or less redundant
inequation.

5 Quick detection of minimal or non-minimal subsets

The main problem we face in the previous two methods is that the minimal subset detection operation is very
costly. In this section, we present various known solutions to this problem and we give some new answers.
Most of these improvements can be applied independently to both methods.

5.1 Upper limit of the rank

The first improvement was provided by the precursor of the previous two methods. Though Cernikov presents
the following improvement in [Cern63], we can find its foundation in [Cern6O, p 296 corollary 2).

Theorem 8 After k variable eliminations, if the historical subset associated with an inequation has more
than k + I elements, then this historical subset is not minimal.

In this case, the detection cost is very low. (ernikov and Kohler included this detection in their
algorithms.

5.2 Passive variables

Duffin, in [Duff74, p 90], introduces the active or passive variable concept. A variable is active during its
elimination if there is at least one pair of inequations in the sense of Fourier's elimination. Otherwise the
variable is said to be passive. Let zj be a passive variable. Its elimination can suppress some inequations
from the system, but does not add any. This comes from the fact that the coefficients of z3 in the inequations
are either all positive (0 <) or all negative (5 0). Then if we delay the elimination of such a variable, since
Fourier's elimination uses only linear combinatories with positive coefficents, the coefficients of xj will all
have the same sign. In particular, the inequations with non-zero coefficients of rj, generate inequations with
non-zero coefficients of xj. These inequations will all be rejected in a subsequent elimination of this variable.
Thus,

Theorem 9 After the elimination of k variables, p of which are passive, if in a historical subset more than
k + I - p elements occur, then this historical subset is not minimal.

124

5.3 Upper and lower limits of the rank

So far, the improvements look globally. However, the minimal subset is a local concept in that a minimal
part depends only on what is included within it. Hence, it is sufficient to look at the eliminated variables
occuring in at least one inequation of the historical subset [lmbegOl.

Assume that the variables eliminated from the initial system are z1 ,zk. We will say that they
are officially eliminated, and will write Ok the set of these variables. For each inequation i produced, the
set Ok can be divided into three disjointed subsets: the subset of effectively eliminated variables denoted
Ei, the subset of implicitly eliminated variables denoted li, and the other variables. A variable is said to
be effectively eliminated for i, if its official elimination produces at least one of its ancestors (initial or
intermediate inequations used to produce i). A variable is said to be implicitly eliminated for i, if the
following three conditions are satisfied: it occurs in at least one inequation of Hi, it does not occur in i, it is
not effectively eliminated for i. (an exemple is given in Section 7). In [Imbe9O] the following two theorems
are shown, where Card(S) denote! s the number of elements of S:

Theorem 10 [First acceleration theorem] If Hi is a minimal subset, then the following relation is satisfied:

l + Card(E,) <_ Card(H,) C 1 +Card(EiU(linOk))

In this same paper it is shown that whatever Hi, minimal part or not, the left inequality is satisfied.
The right inequality gives an upper limit less than or equal to the one of theorem 8 above. The Duffin
improvement is always global and still applicable: we only have to suppress passive variables from Ok.
When the first acceleration theorem quickly detects non-minimal parts, the second acceleration theorem
quickly detects minimal parts:

Theorem 11 [Second acceleration theorem]
Let i be an inequation such that 1 + Card(Ei) = Card(Hi). then Hi is minimal.

This theorem avoids a heavy verification burden. The cost of these two theorems is very low. It linearly
depends on the number of eliminated variables. The costly research operation of minimal subsets, either by
comparison of minimal parts, or by computing a matrix rank, needs to be done only when

I + Card(E1) < Card(Hi) < 1 + Card(EU(lnOk)).

Thus, if there is no implicitly eliminated variable, these two theorems are sufficient. In return, the algorithm
performances decrease when the number of implicitly eliminated variables increases.

5.4 Comparison number

The following improvement deals only with the Cernikov-Fourier method. The set G is a base of F, and there
is a one-to-one map between G and the set of minimal subsets. Then, for each element j of a non-minimal
subset P, there is a minimal part included in P, in which j occurs. As a result, if we take an ordering on the
initial inequations, the comparison between subsets with the same first element is sufficient. So, the average
number of comparisons is divided in half. However, more storage space is needed for intermediary results.

5.5 Redundancies

Let us consider the initial inequation system A'x' + A'z" < b. So far, the only redundancies suppressed
during the elimination process of z", are the ones due to A". However, if we take into account A'z', other
redundancies may appear. I do not know a method which suppress all redundancies, compatible with one
of the Fourier's elimination methods presented above. However, in some cases, the coexistence is possible.
In [JMSY92), it is shown that strong redundancies 2 produced by Fourier's algorithm with the previous
improvements, can be suppressed without subsequent damage.

Theorem 12 Every inequation, at least one ancestor of which is strongly redundant, is strongly redundant.
2the supporting hyperplane of which, is far from the solution set of the inequation system.

125

Proof Let uz < v be a strongly redundant inequation. Let us assume that this inequation is equal to
the linear combinatory ('- oia)z < (c,b,) + ao. The proof is then trivial since u' < v - no is
a logical consequence of the inequation system and since each produced inequation is a linear combinatory
with positive coefficients of the inequations of the system. 3

The systematic detection of strong redundancies is very costly. However, there are some cases in which
the detection cost is lower. The quasi-redundancy is a special case of strong redundancy. An inequation
ur < v is quasi-redundant in Ar < b if there is another inequation of that system written ux < v - r up to
multiplied by a positive scalar, where r is a non-zero positive constant [LHMA89]. The quasi-redundancy
detection is not excessively expensive, because it is roughly a one-to-one comparison of constraints with each
other.

Remark : Assume that all or part of the strong redundancies are suppressed from an intermediary system
C,, and that Ci is obtained by a derived Fourier's elimination method M. Let Ki be the subsystem of Ci so
obtained. To take advantage of this, we have to be sure that in the next steps, all the redundancies detected
by M applied on Ci, will not occur in AK,+1 when this same method is applied on Ki. If this is the case,
we will say that the method M is fully compatible with the partial or full deletion of strong redundancies.
Otherwise, we have to find a means to detect all strong redundancies at each step. And this detection is too
costly, and then impracticable.

The methods of (,'ernikov-Fourier and Kohler-Fourier, are opposed in that the first detects the minimal
subset by comparison with each of the others, whereas the second only needs to know the inequations of its
historical subset. As a result, if some minimal subsets are missing due to strong redundancy deletions, the
comparison method can be put on the wrong track. On the contrary, this is not the case for the matricial
method. In conclusion,

Proposition 13 Any partial deletion of strong redundancies is fully compatible with the Kohler-Fourier
elimination method, but is not fully compatible with the (ernikov-Fourier elimination method.

Then, the partial deletion of strong redundancies is not suitable for the ('ernikov-Fourier elimination
method.

6 Comparison or matricial computation ?

6.1 Complexity

The incorporation of improvements from theorems 8, 9, 10 and 11, results in a great reduction in the cost of
the elimination algorithm. If mo is the number of inequations of the initial system, and if k is the number
of variables to be eliminated, the cost of theorems 8, 10 and 11 is at most O(mo + k) for each produced
inequation. Remark that the detection of the minimality of historical subsets can always be done before the
creation of the new inequations. Thus, time can be saved in cases of rejection.

The cost of minimal subset detection using comparison is, at most, O(morn) for each produced inequation
where m is the maximal number of inequations occurring in the intermediary system during the process of
elimination. It must be noted that in the case of (:ernikov-Fourier method, the comparison must be done
in both directions of the inclusion. If we use the improvements of theorems 10 and 11, the comparison must
be done only for inequations satisfying theorem 10: in both directions of the inclusion between historical
subsets of two new inequations which do not satisfy theorem 11, only in one direction when one of the
new inequations satisfies theorem 11, no comparison is needed when the two inequations satisfy this same
theorem.

The cost of minimal subset detection using matricial computation is, for each produced inequation,
at most 0(k5) in infinite precision, 0(k 3) otherwise. Thus, when k is low, it is better to use matricial
computation, and to change method during the elimination process when k and rn move. Theorem 5 and
its corollary allow for this change at every moment.

Furthermore, in the choice of method, we have to take into account the fact that the matricial method
allows for an independent process of produced inequations. Conversely. if during the elimination of a variable,
the comparison is used, there will be comparisons to do until the end of the elimination of that variable.

126

Input: Az < b, an inequation system.
Let us assume that: = (z',z"), where X" = (X 1., Xk) is the vector
of variables to be eliminated.

Output: A system Cx' < d equivalent to Ax < b on x'
begin

1. We start with
the inequation system S equal to Ax < b,
the set 0 of officially eliminated variables, empty.

2. For zj being successively the variables zX, .. . ,

2.1. Suppress from S all the inequations in which the coefficient of xi is non-zero.
2.2. If there is at least one pair of suppressed inequations with opposite sign co-

efficients of xj, put zj into 0 (* Duflin improvement *), and continue to 2.3,
otherwise continue to 2.

2.3. For each pair of suppressed inequations a,: < bi et a2 Z < b2 , of which the
coefficients aj,1 and aj,2 of zj are respectively positive and negative,

2.3.1 Assume that the sets associated with thes', inequations are re-
spectively H1 ,El,11 and H2 ,E 2,12.. C(ompute H = HI UH 2.
E- El UE 2 and I = 11 U12.

2.3.2 If Card(EU(JnO)) < Card(H) then continue to 2.3.
(*Theorem 10*).

2.3.3 If Card(E) = Card(H) then go to 2.3.5. (*Theorem 11*).
2.3.4 Analyze using comparison 3 or matricial computation the set H. If it

is a minimal part then go to 2.3.5, else continue to 2.3.
2.3.5 Suppress some strongly redundant inequations

(*Theorem 12*). If the new inequation is strongly redundant then
continue to , else continue to 2.2.6.

2.3.6 Put in S the inequation aj,la 2 " - an,2a1x < aj,lb2 - Qj.2 b].

3. Return the system 6' which is then of the form Cx' < d.
end

3 When the comparison method is chosen, also suppress fromn the system the inequations of which the
historical subsets include the one of the new inequation.

Figure 3: Pattern Modified Fourier's Algorithm

Moreover, the comparison method does not always immediately detect redundancies, as a result, this leads
to an additional cost because of the intermediary storage. Consequently. the matricial method allows for a
degree of parallelism higher than the comparison method. And then, the matricial method is better suited
to an additional redundancy deletion such as quasi-redundancy than the comparison method is. In all cases,
these two methods need to be used only when both theorems 10 and 11 fail.

6.2 Modified Fourier's Algorithm

In order to take into account the results of theorems 10 and 11, each inequation i is associated with three sets:
the set Hi of initial inequations from which i is produced, the set Ei of its effectively eliminated variables,
and the set I, of its implicitly eliminated variables. When i is an initial inequation, Hi = {i}, and E£ and Ii
are empty. The pattern algorithm is described in Figure 3.

Note that steps 2.3.4 and 2.3.5 can be interchanged. Particularly, if the inequations are ordered, one
can quickly see when an inequation is quasi-redundant, and avoid the minimality detection for its historical
subset [JMSY92].

If the strong redundancies are suppressed, (step 2.3.5), it is advisable to use the matricial computation
at step 2.3.4.

127

7 An example

In the following example, each inequation is associated with a triplet (H; E; 1). H is the historical subset
of the inequation, E the set of its implicitly eliminated variables and I the set of its implicitly eliminated
variables. Let xi, i = 1,.. . , 5 be the variables to be eliminated in the following system:

(1) 0< -1Z3- Iz4- IT5+ 1 (1;-;-)
(2) O< +Il: + 2 Z4- ly2 + 2 (2:-;-)
(3) O< +IX2 + 2 zs- ly3 + 2 (3;-;-)
(4) 0 < -2X2- 3Xs + lY3- 1 (4; -; -)

(5) 0<_ +I2 (5; -; -)
(6) 0< +1:3 (6;-;-)
(7) 0_< -lXi - lz2 + 2X3- ly1 + 3 (7;-;-)
(8) 0<-lzi-lZ2-2X3-2X4-2za5+ly++y 2 +1y3 -5 (8;-;-)
(9) 0 < -I2- U5s+ 2y2 (9; -; -)

In the elimination of variables ZX, •2, X3 and X4, the retained inequations are all accepted according to
theorem 11. The cost is then minimal.

The elimination of x, gives 0 = {fx) all the pairs give a retained inequation. The new system is:

0 < -IX3- lX4- IXs + 1 (;-;-)
0 < +IX2 + 2x5 - 1_3 + 2 (3;-;-)
0 < - 2 X2 - 3Xs + ly3 - 1 (4;-:-)
0 S +_ X2 (5; -; -)
0 < +1'3 (6; -; -)
0 _< -lx2 - 1z + 2Y2 (9;-;-)
0O< -lX2+ 2X3+ 2X4 - J-lJy-y+ 5 (2.7; z1; -

0_ -1Z2 - 2X3 - 2z5 + lyi + Iy3 -3 (2.8; ZJ; X4)

The elimination of X2 gives 02 = {x, x-)} and the new system is:

0 < -- lX3-- IX4 - X5 + 1 (1;----

0 < +1:3 (6; -; -)
0 < +lx5- ly3 + 3 (3.4: x2; -)
0 < +lx5 + 2Y2 - ly3 + 2 (3.9; z2; -)
0<+2X3+2X4+2r's-ly3-ly 2 -ly 3 +7 (2.3.7; X.X2:-)

0 < -2X3 + ly1 - 1 (2.3.8; X1.l2; X4.a5)

0 < - 3zs + ly3- 1 (4.5; x2; -)
0 < -lZ5 + 2Y2 (5.9; x2; -)
0 < +2X3 + 2X4 - ly1 - 1y2 + 5 (2.5.7; xZ .:2; -)
0 < -2X3 - 2xs + lyi + 1/3 - 3 (2.5.8; Xl.:2; X4)

So far, each pair produces a retained inequation. The elimination of X3 gives 03 ={X , X2, X3} and
proposes nine pairs for the creation of inequations. Among these nine pairs, two are rejected according to
theorem 10. The new system is then:

0 < +Iz5 - ly3 + 3 (3.4; X2; -)
0 < +l1s + 2y2- 1y3+2 (3.9; X2;-)

0 < -3:s + ly3 - 1 (4.5; Z2;-)

0 < -ls + 2Y2 (5.9; X2;-)
0 < -1X4 - ls + 1 (1.6; X3; -)
0 < +lyJ - 1 (2.3.6.8; X) .t2:.3; X4.X5)

0 < -2xs + ly, + 11/3 - 3 (2.5.6.8; X1 .:2.:3; X4)

0_< -ly1 - 1Y2 ly3 + 9 (1.2.3.7; X1.:2-.X3; X4.X5)

0 < +2:4 + 2r5 - 1y2 - ly3 + 6 (2.3.7.8; X-.z2-.X3; X4.:5)

0 < -2x5 - ly, - ly2 + 7 (1.2.5.7; X1 .z2.:3; Z4)

0 < +2X4 - 2x5 - ly2 + 1y3 + 2 (2.5.7.8; X1.z2.:3; X4)

128

The elimination of X4 gives 04 = {IZ, X2, X3, z4} and proposes two pairs for the creation of inequations.
According to theorem 10 no new inequation is created. The new system is then:

0 < +lzs - 193 + 3 (3.4; X 2 -)

0< +ls+ 2 y2- 1y3+2 (3.9; X2; -)
0 < -3z% + 1y3 - 1 (4.5; :2; -)
0 < -lxs + 2y2 (5.9; X2; -)

0 < +1 - 1 (2.3.6.8; :1.:2.Z3; X4.X5)

0 < -2x5 + lyi + 1113 - 3 (2.5.6.8; Z:.Z2.z3; Z4)
0 < -lyl - ly2 - Iy3 + 9 (1.2.3.7; Zi.Z2.Z3; Z4.Z5)

0 < -2zs - ly, - Iy2 + 7 (1.2.5.7; ZI.:2.Z3; X4)

The elimination of : 5 gives Os = {:1, X2, X3, X4, X5) and proposes eight pairs for the creation of inequa-
tions. Two are accepted according to theorem 11. Two are rejected according to theorem 10. And four are
rejected using comparison or matricial computation methods. The final system is:

0 < +lyi - 1 (2.3.6.8; XI.:2.:3; X4.s5)

0_< -ly1 - ly1 - lY3 + 9 (1.2.3.7; XI.:2.:r3; X4.X5)

0 < -- y3 + 4 (3.4.5; .25; --)

0 < +4y2 - ly3 + 2 (3.5.9.; :2.:5; -)

The detailed account of realized operations is given in the table below. In (ernikov or Kholer methods
column, the first number represents the use number of theorem 8, the right number is the use number of
comparison or matricial method. In the right column, theorem 8 is replaced by theorem 10 (first number)
and theorem I I (second number). the third number of this column represents the use number of comparison
or matricial method.

step Cernikov/Kohler + Theorems 10 and II

1 0/2 0/2/0
2 0/8 0/8/0
3 2/7 271/0
4 2/0 2/0/0
5 0/8 2/2/4

total 1 4/25 6/19/4

It can be seen, in this example, that the proportions of a heavy detection method used, are completely
exchanged depending on the use of theorem 10 and 11: (4/29), or theorem 8: (25/29). The advantage supplied
by the two acceleration theorems is greater insomuch as the number of implicitly eliminated variables is lower.
The extreme case is the one where this number is zero. In this extreme case, only these two theorems are
needed for all decisions. This is generally the case when the coefficients of the constraints are randomly
generated.

8 Conclusion

After presenting the approaches of (Cernikov and Kohler for improving the Fourier elimination algorithm,
we have shown that these two approaches produce exactly the same final inequation system. The use of
theorems 10 and 11 introduced in [Imbe9O] considerably decreases the use of costly minimal subset detection
methods. We have seen that the matricial minimal subset detection method is better suited to an additional
redundancy deletion than the comparison detection method.

In addition, we have tested the heuristic which eliminates, at each Fourier step, the variable with the
least production of inequations. The results obtained are clearly not as good as with any other choice, even
at random. In some cases, the computation time increases from half a minute to more than an hour, with
an overwhelming production. The lower initial production can quickly become disastrous.

Finally, the generalization of the passiv- variable concept to variables which only produce non-retained
constraints, is incorrect, as is shown in the following example. Let the initial system be:

129

iF

(1) 0<+X+y+z-+-t (1; -;-)(2) 0O< -X -y+z (2:-)

(3) O<+X-y-z (3;-;-)
(4) 0<-z+y-z (4;-;-)

The elimination of z gives

0 <+2z+t1 (1.2;x; y)

0 < -2z (3.4; z; y)
0<--+2y+1 (1.4; z; z)
0 < -2y (2.3; z; z)

The elimination of y gives the system

0<_+2z+t (1.2;z;y)
0 < -2z (3.4; z; y)

and the elimination of z gives the final system

0 < t (1.2.3.4; x.z; y).

If we had not taken the variable y into account, the inequation 0 < t would be rejected. Then the final
system would be incorrect. Also, this shows the importance of the implicitly eliminated variables.

For new improvements of the Fourier algorithm, it would be interesting to see in which conditions, the
weakly redundant inequations (the ones for which the supporting hyperplanes are adjacent to the solution
set of the inequation system) can be deleted without putting the previous improvements of the Fourier
elimination on the wrong track. However, whatever the future improvements, we cannot prevent the Fourier
elimination from producing a great deal of constraints, with a significant increase in the intermediary steps,
before this number decreases when few variables remain in the system.

References

[Cern60] S.N. (Cernikov. "Contraction of Systems of Linear Inequalities". In Soviet mathematics DOKLADY
1, 1960.

[Cern61a) S.N. C:ernikov. "The Solution of Linear Programming Problem by Elimination of Unknowns". In
Soviet mathematics DOKLADY 2, 1961.

[Cern63] S.N. Cernikov. "Contraction of Finite Systems of Linear Inequalities". In Soviet mathematics

DOKLADY 4, 1963.

[Colm87] A. Colmerauer. "Opening the Prolog Ill Universe". In BYTE, August 1987, p177-182.

[Colm90] A. Colmerauer. "An Introduction to Prolog IIl". In Communications of the ACM, 33, vol 7, July
1990. Also Version fran~aise parue dans les comptes rendus des Dixiimes journies Internationales : Les
systimes experts et leurs applications, Avignon, juin 1990.

[Dufi74] R.J. Duffin. "On Fourier's Analyse of Linear Inequality Systems". In Mathematical Programming
Study 1 (1974)71-95. North-Holland Publishing Company.

(DVSA88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier. "The Constraint
Logic Programming Language CHIP". In Proceedings of the International Conference on Fifth Generation
Computer Systems, Tokyo, Japan, December 1988.

[Fourie] J.B.J Fourier. reported in : "Analyse des travaux de l'Acad6mie Royale des Sciences, pendant
l'ann~e 1824, Partie math~matique". Histoire de I'Acaditnie Royale des Sciences de I'institut de France
7 1827, xlvii-lv. (Partial English translation in: D.A. Kohler, "Translation of a Report by Fourier on his
work on Linear Inequalities", Opsearch 10 1973 pages 38-42).

130

[Imbe89] J L. Imbert. "Simplification des Systbmes de Contraintes Numtriques Lin~aires". Th~se de Doctorat
de I'Universit6 d'Aix-Marseille 1i, facultý des Sciences de Luminy, Mai 1989.

[Imbe90] JL. Imbert. "About Redundant Inequalities Generated by Fourier's Algorithm". I1 P. Jorrand,
editor, Proceedings of the Fourth International Conference on Artificial Intelhgence, AIMSA'90, p 117-
127.Varna, 1990, Bulgaria. North-Holland. (received the Best Paper Award of the conference).

[ImVH92a] JL. Imbert and P. Van Hentenryck. "A Note on Redundant Linear Constraints". Technical
Report CS-92-11, CS Department, Brown University, 1992. 13 pages.

[JaLaS6I J.Jaffar and JL. Lassez. "Constraint Logic Programming". Technical Report 86/73. Dept. of com-
puter science. Manash University (June 1986). An abstract appears in Proceedings of the 14th Principles
of Programming Languages. Munich. 1987. pp 111-119.

[JaMi87] J.Jaffar, S. Michaylov. "Methodology and Implementation of a CLP System". In Proceedings of
the Logic Programming Conference. Melbourne, 1987. M.I.T. Press.

[JMSY92] J.Jaffar, M.J. Maher, P.J. Stuckey and R.H.C. Yap. "Output in CLP(3Z)". In Proceedings of
the International Conference on Fifth Generation Computer Systems, pages 987-995, June 1992, Tokyo,
Japan.

[KKR90 P.C. Kanellakis, G.M. Kuper and P.Z. Revesz. "Constraint Query Languages". in Proceedings of
the ACM Conference on Principles of Database Systems. Nashville 1990.

[KLTZ83] M.H Karwan, V. Lofti, J. Telgen and S. Zionts. "Redundancy in Mathematical Programming: a
State-fo-the-Art survey". In Lecture Notes in Computer in Economics and Mathematical Systems, Vol
206, springer Verlag 1983.

[Kohl67] D.A. Kohler. "Projection of Convex Polyhedral Sets". Ph.D. Thesis. University of California,
Berkeley, 1967.

[LaLa9l] C. Lassez and JL. Lassez. "Quantifier Elimination for Conjunctions of Linear Constraints via a
Convex Hull Algorithm". To Appear 1991.

[LHMA89) JL. Lassez. T. Huynh and K. McAloon. "Simplification and Elimination of Redundant Arihtmetic
Constraints". In Proceedings of the North-American Conference on Logic programming (N'ACLP'89),
Cleveland, Ohio, october 1989, MIT Press.

[Telg8l] J. Telgen. "Redundancy and Linear Programming". Mathematical Center Tracts 137. Mathematisch
Centrum, Amsterdam, 1981.

[Shri86] A. Schrijver. "Theory of Linear and Integer Programming". lnterscience Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons, 1987.

[VHen89] P. Van Hentenryck. "Constraint Satisfaction in Logic Programming". M.I.T. Press, 1989.

131

Domains decomposition in
Finite Constraint-Satisfaction Problems*

Philippe Jigou
L.I.U.P. - Universiti de Provence

3, place Victor Hugo
F13331 Marseille cedex 3, France

jegouQgyptis.univ-mrs.fr

Abstract

In this paper, we present a method for improving search efficiency in the area of Constraint-Satisfaction-
Problems in finite domains. This method is based on the analysis of the micro-structure of a CSP. We
call micro-structure of a CSP, the graph defined by the compatible relations between variable-value pairs:
vertices are these pairs. and edges are defined by pairs of compatible vertices. Given the micro-structure
of a CSP, we can realize a pre-processing to simplify the problem with a decomposition of the domains of
variables. So. we propose a new approach to problem decomposition in the field of CSPs, well adjusted
in cases such as classical decomposition methods are without interest (i.e. when the constraint graph is
complete). The rn!thod is described in the paper and a complexity analysis is presented, given theoretical
justifications of the approach. Furthermore. a polynomial class of CSPs is induced by this approach, its
recognition being linear in the size of the considered instance of CSP.

1 Introduction

Constraint-satisfaction problems (CSPs) involve the assignment of values to variables which are subject to
a set of constraints. Examples of CSPs are map coloring, conjunctive queries in a relational databases,
line drawings understanding, pattern matching in production rules systems. combinatorial puzzles... In the
general case. finding a solution or testing if a CSP admits a solution is a NP-complete problem. A well
known method for solving CSP is the Backtrack procedure. If i is the number of variables. d the size of
the domains of variables, and in the number of constraints, the complexity of this procedure is O(in.d"). A
better bound is given using decomposition methods as tree-clustering (Dechter & Pearl 1989) or cycle-cutset
method (Dechter 1990). The complexity is then of the order of dA. K being a parameter related to the
structure of the CSP (the constraint graph). If the constraint network is a complete graph. then K = n. The
decomposition methods are based on the structure of the CSP, i.e. the structure of the constraint graph.

In this paper, we present a decomposition method based on the "micro-structure" of the CSP. We call
micro-structure of a CSP, the graph defined by the compatible relations between variable-value pairs: vertices
are these pairs, and edges are defined by pairs of compatible vertices (compatible values). Given the graph
associated to the micro-structure of a CSP. the problem of finding a solution to the CSP is equivalent to the
problem of finding a n-clique (a set of vertices that induces a complete subgraph with these n vertices) in the
micro-structure. Considering this property, we use triangulation of graphs (Kjaerulff 1990) and clustering
of values driven by maximal cliques in the micro-structure to decompose the micro-structure associated
to the CSP VP to solve. This approach is motivated by the good algorithmic properties of triangulated
graph, particularly to find maximal cliques. Every maximal clique induces a domains decomposition, and
so, generates a collection of problems 7P1, P2, ... P.P, equivalent to the initial problem P. Each problem P'i,
corresponds to a sub-problem of P with a size of domains equal to 4i, with the inequality 4i _< d. So the
complexity of solving P is now the sum of the complexities O(n.6b'), for i = 1,2 p. The complexity of
the decomposition is linear in the size of the problem P. and the number of new sub-problems is at most

*This work is supported by the BAHIA project of the PRC'-GDR IA of CNNRS.

132

linear in the size of P. The quality of the decomposition is related to the value of each 6j: more the value
6i is small, more the decomposition is good. For example, if b, = I or 2, the complexity of the problem P,
is now polynomial.

The section 2 introduces some preliminaries about CSPs while the third section defines formally the
micro-structure. The method of domains decomposition is presented in the section 4. This is followed by
a theoretical analysis of the method, concerning a complexity analysis, and showing polynomial classes of
problems associated to the method.

2 Preliminaries

A finite CSP (Constraint Satisfaction Problem) is defined as a set X of n variables X1 , X2,... .X., a set D
of finite domains DI, D2, ... Dn, and a set C of m constraints C1, C2 C,m. A constraint C, is defined on
a set of variables (Xi. , Xi,,) by a subset of the cartesian product (Di, x Dj ... x Dj,,); we note this
subset RA (R. specifies which values of the variables are compatible with each other). R is the set of all
R, for i = 1,2,...m. So, we denote a CSP P = (X, D, C, R). A solution is an assignment of value to all
variables which satisfies all the constraints. For a CSP P, the hypergraph (X, C) is called the constraint
hypergraph. A binary CSP is one in which all the constraints are binary, i.e. they involve only pairs of
variables, so (X, C) is then a graph (called constraint graph) associated to (X, D, C, R). This paper deals

only with binary CSPs. To simplify notations for binary CSPs, a constraint between variables X° and XA is
denoted Cii, and thi associated relation Rij. For a given CSP, the problem is either to find all soluticuns or
one solution, or to know if there exists any solutionw the last problem is known to be NP-complete.

X, 1 X2 R12 R 14 R24

C14 C 23 b d R34RR23

RN R13 X2X3 X 4

X4
X3 X

Figure 1. Binary CSP with complete constraint graph.

CSPs are normally solved by different versions of backtrack search. In this case, if d is the size of
domains (maximum number of values in domains D,), the theoretical time complexity of search is then
O(m.d"). Consequently, many works try to improve the search efficiency. They mainly deal with binary
CSPs. In (Freuder 1982), Freuder, considering the problem of finding one solution, gives a preprocessing
procedure for selecting a good variable ordering prior to running the search. One of his main results is a
sufficient condition for backtrack-free search. This condition concerns on one hand a structural property
of the constraint graph, and on the other hand a local consistencies. After (Freuder 1982), Dechter and
Pearl (Dechter and Pearl 1988) give two classes of polynomially solvable CSPs. For example, they define a
property: if a binary CSP is arc-consistent, and if its constraint graph is acyclic, then the CSP admits a
solution and there is a backtrack-free search order. This property holds for n-ary CSPs with hypergraphs
(Janssen et al 1989).

Some methods use decomposition techniques based on structural properties of the CSP. These methods
exploit the fact that the tractability of CSPs is intimately connected to the topological structure of their
underlying constraint graphs. Moreover, these methods give an upper bound to the complexity of the
problem, therefore, an upper bound to the search. The above property gives the goal of the transformation:
given a CSP, the result must be an other CSP, equivalent to the first one, whose the structure is a tree. Two
methods are based on this principle: the cycle-cutset method (Decther 1990) and tree-clustering scheme
(Decther & Pearl 1989).

133

The cycle-cutset method (CCM) is based on the notion of cycle-cutset. The cycle-cutset of a graph,

is a set of vertices such as the deletion of these vertices induces an acyclic graph. COM is based on the

fact that variables assignments changes the effective connectivity of the constraint graph. So, as soon as
all the variables of the cycle-cutset are assigned, all the cycles of the constraint graph are cut. Therefore,
the resulting problem is tree-structured and Freuder's theorem (Freuder 1982) can be applied to solve it. A
property summarizes the method: if all the variables belorging to the cycle-cutset are instanciated, and if the
resulting CSP is arc-consistent, then the problem admits solutions and a backtrack-free order. So, searching
a solution, we can consider that the size of cycle-cutset corresponds to the height of the backtracking. More
precisely, if K is the size of the cycle-cutset, the complexity of CCM is O(m.dK+ 2).

Tree-clustering (TC) consists in forming clusters of variables such as the interactions between the clusters
are tree structured. The hyper-edges of the induced constraint hypergraph are defined by the clusters of
variables. The new CSP is equivalent to the first one, but the associated constraint hypergraph is acyclic.
So, the property concerning acyclic n-ary CSPs holds for this CSP. If E is the size of the maximal cluster,
the complexity of TC is then O(n.E.dE).

If the constraint network is a complete graph, we have the equality E = K +2 =- n. So, the complexity of
decomposition methods is the same than for classical backtracking, of the order of da. Consequently, complete
constraint graphs (n-cliques) can be considered as hard instances of CSP for decomposition methods. The
decomposition method described in this paper proposes a solution to handle these hard CSPs, but can also
be used on incomplete constraints graph. It is based on a decomposition of the micro-structure of a CSP.

3 Microstructure of CSPs

We call micro-structure of a CSP, the graph defined by the compatible relations between variable-value pairs:
vertices are these pairs, and edges are defined by pairs of compatible vertices.

Definition 1. Given a binary CSP P = (X, D, C, R) such as (X, C) is a complete graph. P(r) is called

intcro-structure of P and it is a n-partite graph defined by:

"* XD = {(Xi, a)/X E X and a E D)

"* CR = {{(.V,a),(Nj,b)}/(X,,) Cqi E C and (a.b) E Ri,,

" P(P)= (xD, CR)

(X1,a) (X 2, C)

(X 4. g) (X 3 ,e0

Figure 2. Micro-structure of the CSP given in figure 1.

Necessary, p(P) is a n-partite graph because it can not exist edges between vertices of a same do-
main. In the example in figure 2, we have sets {(XI. a), (XI, b)), {(X 2 , c), (X2 , d)), {(Xs, e), (Xs, f)) and
{(X 4 , g), (X4 , h)) with no one edge between vertices associated to the same variable.

If (X, C) is not a complete graph, i.e. there are two variables Xj and Xj such as the constraint Cj does
not exist between variables Xi and Xj, p(P) can be completed adding the universal relation between these
variables. The universal relation is the relation Rj = DA x Dj (all pairs of values are compatible). In this
paper we always consider CSPs with complete constraint graph.

134

Given a CSP 'P = (X, DC. C,) and its nlicro-structure p(P), we can derive a basic property.

Property 2. Given a CSP r = (X. D. C, R) and its mnicro-strtucture p('P) we have:

(at,a2 a.) is a solution of P : {(((N, o). (N 2 ,a-) (X, a,n)) is a n-clique of p(*P)

Proof. (at,a 2 ,...an) is a solution of P v Vi, j,1 :5 i < j < n,(ao,ai) E Rjj 4 Vi,j, 1 <_ i < j <5
n, {(Xi,aj),(Xj,aj)) E Ct * {(XI,oa) (Xn,,an)) is a n-clique of p(P)

We remark that a solution of 'P corresponds to a covering of n vertices in the constraint graph (X, C):
there is exactly one vertex (X,, a) for each domain D,, for i = 1, 2, ... n. So, solving a CSP can be considered
as the problem of finding a n-clique in its micro-structure. The method we present for the decomposition of
domains is based on the topological analysis of the microstructure, related to the existence of n-cliques.

4 Simplifying CSPs by domains decomposition

We seen that solving a CSP (finding one solution) can be considered as the problem of finding a n-clique
in its microstructure. This problem is known to be NP-hard (Karp 1972), but there are classes of graphs
such as polynomial (linear) algorithms have been defined. The method we present is based on one of these
classes: triangulated graphs. So. some definitions and properties must be recalled.

Definition 3. A graph is friangidafed iff every cycle of length at least four has a chord, i.e. an edge
joining two non-consecutive vertices along the cycle.

Property 4. (Fulkerson & Gross 1965) A triangulated graph on i vertices has at most it maximal cliques
(a clique is maximal iff it is not included in an other clique).

Property S. (Gavril 1972) The problem of finding all maximal cliques in a triangulated graph (X,C)
is in O(N + M) if N =1 X and Al =1 C 1.

Given the micro-structure of any CSP, it is not possible to immediately use these properties because any
micro-structure is not necessary a triangulated graph (eg. the micro-structure in the figure 2).

Nevertheless, it is possible to use these results: given any graph G = (X, C). it is possible to add new
edges in C to obtain C', such as the graph r(G) = (X. C') is a triangulated graph. This addition of edges
is called triangulation, and can be realized in a linear time in the size of the graph (Kjaerulff 1990).

(X .,) (X 2 .C)

(X). b)

(X. &) ((3,)

Figure 3. Triangulation of the micro-structure of figure 2. Added edges are given by the dotted lines.

After a triangulation, it is possible to apply the property 5. Suppose we have a CSP 'P = (X, D, C, R)
and its micro-structure p('P) = (XD, CR). Consider a triangulated graph defined by a triangulation of
(XD, CR). There are three classes of edges in r(xD, CR):

* edges {(Xi,a),(Xj,b)) already in p(P). i.e. (a,b) is in Rj

135

* edges J(Xj,a),(Xjb)}/i a j adding this edge corresponds to add the tuple (ahb) in Rj

* edges {(X,,a),(X,,b)) : adding this edge has no senmantic

Since r(XD, CR). is a triangulated graph. we know that there are no more than n.d maximal cliques
in this graph (by property 4), and that it is possible to find them with a linear algorithm (by property
5). Furthermore, we know that if there exists solutions, anyone is in a maximal clique of this triangulated
graph, and consequently, the search of solutions of P will be limited to the search of solutions on separated
problems, each one associated to a maximal clique.

Consider Y, a maximal clique in the triangulated graph r(XD, CJ); two possibilities must be considered:

"* Y is not a covering of all domains: there is at least one variable Xi of X that does not appear in the
vertices (Xi, a) of Y. Consequently. the clique Y does not contain a n-clique that is a covering of all
domains, and so there is no solution in Y.

"* Y is a covering of all domains. Given Y, we can induce a new CSP, by the projection of vertices in
Y on each domains. So, we obtain a collection of domains Dy.j such as Dyj g Di, each new domain
DAy being induced by the vertices (X,. a) in Y. The constraints of the new CSP associated to Y are
the old constraints, restricted to the values in new domains. Searching a solution can be realized on
this new CSP. Nevertheless. the fact that Y is a covering of all domains does not guarantee that there
is a solution, because the triangulation adds some new edges that connect vertices corresponding to
incompatible values.

Theoretical foundations of the method are given below.

Definition 6. Given a binary CSP 1" = (A.D.C.R). its micro-structure P(P) = (XD.CR). and Y a
subset. of XD. The CSP induced by Y on P. denoted •(hY) is defined by:

"* Dy = {Dy.i Dy,n) such as Dy., = f a E Di/(X,.o) E V)

"* Ryj = {(a.b) E Rij/(X,.a).(.Xj.b) E Y)

"* PY) = (X, DIC. Ry)

The theorem below define the principle driving the domains decomposition:

Theorem 7. Given a binary CSP 1' = (N. D. C'. R). its micro-structure p(P) and Y =. .1 ,, the set
of the maximal cliques of r(p(r)) . we have:

*Sol ton() =Ut'= l,'otions (L)P)

Proof.

"• With property 2, we knou" that any solution of the problem r is associated to a n-clique. So, this n-

clique is necessary included in one sri IV because in a graph. each clique belongs necessary to a mazimal
clique of the considered graph. Consequenily. tih considered solution of? is necessary a solution of
r(0" i).

"* Every solution of a problem P(ot) is a clique in p(r') because all the edges of this clique are edges
induced by compatible values in r. Consequentily, eurry solution ofT•(') is a solution of ?.

We remark that a solution of P"{)}) can appear as a solution of an other ?(Y,). In the figure 4, we
present the applying of theorem 7 to the example.

136

Maximal cliques Decomposed domains
; = Mx,,(, a), 727 x4, h)) Di,, a DY.2 = C), DI.' = 0, Dy.,, = {hI

T (Xb),6 ,(X 2 ,C),(X3, e),(X 4.g)1 D1 .1 = {b}. Dy,.2 = c ,'.3 = el,Dh)•.4 = {g1
Y3 (X,, :, (X2, d), (X3, e), (X3.f)) D,1 ,s = jb}. D,. 2 = d D)'.. = f,, AD).,4=

-- =V(2,C),(X3, e),_X4,h) D) = D0 = ' -cr ,Dy4.3 = je},D),.4 = {h}
176= (X- ,b),(X 3,e),(Xa,f),(X 4.g)) Di,. = {b}.De.. = 0,D1 ,. = {e,f).D,,.4 = {g)

Figure 4. Applying theorem 7 to the CSP of figure 1. The cliques 1,, l;, V4 and I' do not cover all the domains;
so the induced sub-problem are not consistent. On the other hand, the cliques Y2 induces a consistent sub-problem.

Algorithm:

"* generation of p(P)

"* triangulation of p(P); we obtain r(p(P))
"* research of all maximal cliques in r(w(v)); the result of this step is Y = { Y'... Y,)

"* for all Y1 in Y do
if K' is a covering of all the domains in D
then solve P(I;) else P(1) has no solution

The first step is realized first with an enumeration of the values of all the domains to obtain the vertices
of p(P), and secondly. with an enumeration of all the compatible tuples of relations to obtain the edges
of p(P). If the problem P has not a complete constraint graph. it is possible to transform it with the
addition of the universal constraint between non-connected variables. The second step can be realized using
triangulation algorithms - see (Kjaerulff 1990). The maximal cliques can be obtained by the algorithm of
Gavril (Gavril 1972)(Golumbic 1980). The last step is first realized with the generation of the problem V1(0):
it is sufficient to define new domains based on the vertices in 11. Finally. solving P(),-) is possible with an'
classical method such as standard backtracking for example.

5 Theoretical analysis
We first give some notations. Given P = (X, D. C. R) and its micro-structure P(P) = (XD- CR).

"* n is the number of variables

"* d is the maximal number of values in domains. i.e. Vi. I < i < n, I D, d

"* N the number of vertices in p(*P):.\ = F"=, I D, 1< n.d

"* m is the number of constraints: if the constraint grapgh is complete. then in = n.(n - 1)/2.

" Al is the number of edges in p(r) : .l = E",J=, I R,, 1 <. N*.(N - 1)/2 < n2 .d2

"* p is the number of maximal cliques in l(p(P)): p < n.d.

The cost of step I in the algorithm is O(N + Al). Nevertheless. if (X. C) is not a complete graph, we
have O(n 2.d-). Triangulation step (step 2) is linear is the size of the resultant graph: O(N + A'), if M'
is the new set of edges after triangulation. Necessary. A! <_ AP' < n2.d2 . The cost of finding all maximal
cliques in I(p(Pv)) is also linear: O(N + W'). By property 4, we know that the number of maximal cliques
p satisfies the inequality p _ N.

For the last step, we first evaluate the cost of solving one problem P(I-)); it can be bounded by:

o(,.(H'=,I Dv,., I))

So. the cost of the last step. i.e. the cost of solving all sub-problems P(,). for j = 1.2. ... p. is:

137

O [Dr,,rl'=I I)))

The comparison of this cost with respect to the cost of standard backtracking on the initial problem is
necessary. The cost of backtracking on r is

O(vn.(Il"[i I ID, 1))

If we consider d =I Di I and 6 =I DI,.i, 1, for i = 1,2.... n and j = 1, 2, .p, the comparison between

standard backtracking and domains decomposition is now

m.d" VS m.p.6"

or

d" VS p.6"

We know that p is bounded by n.d (cf. property 4). So we give comparison of exponential terms, d"
and 6". Suppose that the decomposition induces a simplification of domains, such as we have for example
d = 2.6. The comparison is now

d" VS -#-.

because p.6 " = p.(d/2)" = p.(I/2)".d" < [n.d(1/2)"].d".

Consequently, the decomposition can be very interesting on the instances of problems such as these kind
of hypothesis on d and b hold. i.e. for the problems such as we have [n.d.(1/2)") < 1.

The decomposition method induces a polynomial class of CSP. If we consider tile class of CSPs r such
as the triangulation of their micro-structure p(P) connects at most two values belonging to the same domain
in every obtained maximal cliques, this class of CSPs is polynomial:

Property 8. Let P be a CSP. and its micro-structure p(P). If in 17(p(P)) there is at most one new
edge {(Xia), (Xi. b)} per domain D, in every new maximal cliques then. there is a polynomial algorithm to
solve "P (searching for one solution).

Proof. After applying the algorulhm for tingulalioi of 1h(nicro-structur(p(rI). the si:e of domains
in all the induced sub-problems P() is at most tivo. Consequently. all induced sub-problems can be soaled
applying the result given in (Dechtcr J992). On(corollary of this theorem dials for binary CSPs with bivalhnt
domains, and provides a polynomial method to sohe thM., class of CSPs.

The interest of this class is that checking for the adherence will be linear in the size of any checked
instance. Nevertheless, a real problem concerning this class is to the kind of constraints that we can represent
satisfying this kind of property.

6 Conclusion

We proposed a new method to reduce domains in constraint satisfaction problems. This method is based on
the analysis of the micro-structure of CSPR i.e. the structure of the relations between compatibles values of
the domains. Given the micro-structure of a CSP, we present a scheme to decompose domains of variables.
forming a set of sub-problems such as they have necessary less values than domains in the initial problem.
This decomposition is driven by combinatorial and algorithmic properties of triangulated graphs. The
complexity analysis of the method shown the theoretical advantages of the approach. Indeed. given a CSP
r. if d is the size of domains of the n variables, and if t his problem is defined on m constraints, the complexity
of any search like standard backtracking. is O(m.d"). We shown that the method induces the complexity
O(mn.p.6") with p being the number of induced sub-problem. - p is necessary linear in the size of the problem

138

P - and 6 is the size of new (domains. always satisfvying < d. FnrtlIlermore. a polyvionijal class of CSPs has
heen defined, the recognition of its elements heing linear in the sire of instances.

The decomposition method is at present only defined on binary CSPs. Nevertheless. an extension to

n-ary CSPs is posilble. A way to realize this extension consists in using primal constraint graph (Dechter

&- Pearl 88). Suppose we have a n-ary CSP with a constraint C(between three variables; that is Ca =

(X,,Y•,,Xk). To generate the microst ructtre, we consider three binary constraints: Cij,Cik and Cj,.
The associated relations are R =i = R,(.\,XYj)], Rit = R#[(Ni. X•-)] and Rit. = Ri[(Xj,Xk)]. This primal

rep.-esentation is not equivalent to the initial n-ary CSP because the new problem is less constrained. But
it is sufficient to realize domains decomposition, since the constraints finally considered to solve the initial
CSP will be the initial n-ary constraints. with possibly, smallest domains.

Now, an experimental analysis must be realized to see practical interests of the approach.

References

Dechter, R. 1990. Enhancement Schemes for Constraint-satisfaction problems: Back-jumping, Learning and
Cutset Decomposition. Artificial lItelligence ,11:273-312

Dechter, R. k Pearl. J. 1988. N•,, ~oiL-haeI heuristiics for cons: raint-satisraction problenms. Artificial

Intelligeince 34:1-38.

Dechter, R. & Pearl, .1. 1989. Tree Clustering for ('onstraintt Networks. Artificial Intelligence 38:353-366.

Freuder, E.C. 1982. A sufficient condition for hacktracr-fre' search. .ACM. 29(1):2,1-:12.

Fulkerson, D.R. & Gross, 0. 1965. Incidence inatrices and interval graphs. Pacific ,,. Mlath. 15:83.5-855.

Gavril, F. 1972. Algorithmins for nminin:imn coloring, nnaxinlmunm clique. mnilintimu covering by cliques, and

maximunm independent set of a chordal graph. SIAM .J. Conmput 1(2):180-187.

Golumbic, M.C. 1980. Algorithmic Graph Theory and Prf•ect Graphs. Academic Press. New-York.

Janssen. P., JRgou, P., Nouguier. B. k- Vilarem. M.C. 1989. A filtering process for general constraint
satisfaction problems: achieving pairwise-cow~isteitcy using an associated binary representation. In Proceed-

ings of the IEEE WVorkshop on Tools for Artificial Intelligence, 420-127. Fairfax. USA.

Karp, E.C. 1972. Reducibility amnong combinatorial problems. In Complexity of Computer Computation.
8.5-103. Miller & Thatcher Eds. Plenum Press. New-York.

Kjaerulff, U. 1990. Triangulation of Graphs - Algorithms Giving Small Total State Space. Judex R.R.
Aalborg. Denmark.

139

Memoization in Constraint Logic Programming*

Mark Johnson
Department of Cognitive and Linguistic Sciences, Box 1978

Brown University
mjOcs.brown.edu

Abstract

Motivated by a natural language processing application, this paper shows how to extend memolsation
techniques for logic programs to constraint logic programnming. The lemma table proof procdure presented
here generalizes standard memoization proof procedures such as OLDT resolution by (i) allowing goals
and constraints to be resolved in any order, (ii) permitting memoization on sets of goals and constraints
rather than only individual goals, and (iii) allowing the solutions recorded in the memo table to include
unresolved goals and constraints, which are "inherited" by the calling routine.

1 Introduction

This paper shows how to apply memoization (caching of subgoals and associated answer substitutions) in a
constraint logic programming setting. The research is is motivated by the desire to apply constraint logic
programmning (CLP) to problems in natural language processing.

In general, logic programming provides an excellent theoretical framework for computational linguis-
tics (13]. CLP extends "standard" logic programming by allowing program clauses to include constraints
from a specialized contraint language. For example, the CLP framework allows the feature-structure con-
straints that have proven useful in computational linguistics [15] to be incorporated into logic programming
in a natural way [1, 5, 16].

Because modern linguistic theories describe natural language syntax as a system of interacting "modules
which jointly determine the linguistic structures associated with an utterance (2], a grammar can be regarded
as a conjunction of constraints whose solutions are exactly the well-formed or grammatical analyses. Parsers
for such grammars typically coroutine between a tree-building component that generates nodes of the parse
tree and the well-formedness constraints imposed by the linguistic modules on these tree structures [4, 6, 8].
Both philosophically and practically, this fits in well with the CLP approach.

But the standard CLP framework inherits some of the weaknesses of the SLD resolution procedure that
it is based on. When used with the standard formalization of a context-free grammar the SLD resolution
procr•iure behaves as a recursive descent parser. With left-recursive grammars such parsers typically fail
to teiminate because a goal corresponding to a prediction of a leftrecursive category can reduce to an
identical subgoal (up to renaming), producing an "infinite loop". Standard techniques for left-recursion
elimination [12, 13) in context-free grammars are not always directly applicable to grammars formulated as
the conjunction of several constraints [10].

With menrization, or the caching of intermediate goals (and their corresponding answer substitutions),
a goal is solved only once and its solutions are cached; the solutions to identical goals are obtained from this
cahe. Left recursion need not lead to non-termination because identical subgoals are not evaluated, and the
infinite loop is avoided. Further, memoization can sometimes provide the advantages of dynamic program-
ming approaches to parsing: the Earley deduction proof procedure (a memoized version of SLD resolution)
simulates an Earley parse [3] when used with the standard formalization of a context-free grammar [14].

"Thli research was initiated during a summer visit to the IMSV, Universitit Stuttgart; which I would like to thank for their
support. Thanks also to Pascal van Hentenryck and Fernando Pereira for their important helpful suggestions.

140

parse(String. Tree) :- wf(Tree, s). y(Tree. String, f).

y(.-Word, [Word I Words]. Words).
y(_/[lreel]. Words0. Words) :- y(Treel. Words0. Words).
y(./[Tre1.Tree2J. WordsO. Words):-

y(Treel, WordsO, Wordsl), y(Tree2, Wordsl, Words).

wf(np-kim, np). % NP -, Kim
wf(n-friend. n). % N --.
wf(v-wlks, v). % V -.
wf(s/[Treel. Tree2], s) :- wf(Treel, np). wf(Tree2, vp). % S-. NP VP
wf(np/[Tree1, Tree2]. np) :- wf(Treel. np), wf(Tree2, n). % NP NP N
wf(vp/'Treel. vp) :- wf(Treel. v). % VP -. V

Figure 1: A grammar fragment

Thus constraint logic programming and memoization are two recent developments in logic programming
that are important for natural language processing. But it is not obvious how, or even if, the two can be
combined in a single proof procedure. For example, both Earley Deduction [14] and OLDT resolution [17,201
resolve literals in a strict left-to-right order, so they are not capable of rudimentary constraint satisfaction
techniques such as goal delaying. The strict left-to-right order restriction is relaxed but not removed in [18,
19], where literals can be resolved in any local order. This paper describes soundness and completeness
proofs for a proof procedure that extends these methods to allow for goal delaying. In fact, the lemma table
proof procedure generalizes naturally to constraint logic programming over arbitrary domains, as described
below.

The lemma table proof procedure generalizes Earley Deduction and OLDT resolution in three ways.

"* Goals can be resolved in any order (including non-local orders), rather than a fixed left-to-right or a
local order.

" The goals entered into the table consist of non-empty sets of literals rather than just single literals.
These sets can be viewed as a single program literal and zero or more constraints that are being passed
down into the subsidary proof.

" The solutions recorded in the lemma table may contain unresolved goals. These unresolved goals can
be thought of as constraints that are being passed out of the subsidary proof.

2 A linguistic example

Consider the grammar fragment in Figure I (cf. also [4, pages 142-177]). The parse relation holds between a
string and a tree if the yield of the tree is the string to be parsed and tree satisfies a well- formedness condition.
In this example, the well-formedness condition is that the tree is generated by a simple context-free grammar,
but in more realistic fragments the constraints are considerably more complicated.

Trees are represented by terms. A tree consisting of a single pre-terminal node labelled C whose single
child is the word W is represented by the term C-W. A tree consisting of a root node labelled C dominating
the sequence of trees T, ... T, is represented by the term C/[T1 ,..., TJ.

The predicate wf(7Tee, Cat) holds if Tree represents a well-formed parse tree with a root node labelled
Cat for the context free grammar shown in the comments. The predicate y(7Tee, SO, S) holds if SO-S is
a "difference list" representing the yield of Tree; it collects the terminal items in the familiar tree-walking
fashion. From this program, the following instances of parse can be deduced (these are meant to approximate
possessive constructions like Kim's friend's friend toalks).

parse([kim ,walks], s/[np-kimr.vp/[v-walks]]).
parse([kim.friend.walks], s/(np/[np-kim,n-friend].vp/[v-walks]]).

141

(1) parse(KW.T).
(2) wf(T.s). y(T.KW.D).
(3) v /(Tl.y 1.KW.S1). y(T2.S1.).
(4) wf(TI~np), wf(TY2,vp). y(T1,KW,S1),

(5) y(T3.KW.S3). y(T4.S33i3Tfl.71T3.T4].np)

(6) wf(T3.np). wf(T4.n), y(T3.KW,3)T
(7) y(TS.KW.SS), y(T6.SS•93TSQ7 .T6].np),..

Figure 2: An infinite SLD refutation, despite co-routining

parse((kim.friend.friend.walks], s/[np/[np/[np-kim.n-friendl.n-friend].vp/[v-walksl]).

The parsing problem is encoded as a goal as follows. The goal consists of an atom with the predicate parse
whose first argument instantiated to the string to be parsed and whose second argument is uninstantiated.
The answer substitution binds the second argument to the parse tree. For example, an answer substitution
for the goal parse([Kim.friend.walks]. Tree) will have the parse tree for the string Kim friend waLks as the
binding for Tree.

Now consider the problem of parsing using the program shown in Figure I. Even with the variable String
instantiated, both of the subgoals of parse taken independently have an infinite number of subsumption-
incomparable answer substitutions. Informally, this is because there are an infinite number of trees generated
by the context-free grammar, and there are an infinite number of trees that have any given non-empty string
as their yield. Because the standard memoization techniques mentioned above all compute all of the answer
substitutions to every subgoal independently, they never terminate on such a program.

However, the set of answer substitions that satisfy both constraints is finite, because the number of parse
trees with the same yield with respect to this grammar is finite. The standard approach to parsing with such
grammars takes advantage of this by using a selection rule that "coroutines" the goals wf and y, delaying all
wf goals until the first argument is instantiated to a non-variable. In such a system, the wf goals function as
constraints that filter the trees generated by the goals y.

In this example, however, there is a second, related, problem. Coroutining is not sufficient to yield a
finite SLD tree, even though the number of refutations is finite. Informally, this is because the grammar
in Figure 1 is left recursive, and the search space for a recursive descent parser (which an SLD refutation
mimics with such a program) is infinite.

Figure 2 shows part of an infinite SLD derivation from the goal parse(KW, T), where KW is assumed
bound to [kim,walks] (although the binding is actually immaterial, as no step in this refutation instantiates
this variable). The selection rule expresses a "preference" for goals with certain arguments instantiated. If
there is a literal of the form wf(T, C) with T instantiated to a non-variable then the left-most such literal is
selected, otherwise if there is a literal of the form y(T, SO, S) with SO instantiated to a non-variable then the
left-most such literal is selected, otherwise the left-most literal is selected. The selected literal is underlined,
and the new literals introduced by each reduction are inserted to the left of the old literals.

Note that the y and wf literals resolved at steps (6) and (7) in Figure 2 are both children of and variants
of the literals resolved at steps (5) and (6). This sequence of resolution steps can be iterated an arbitrary
number of times. It is a manifestation of the left recursion in the well-formedness constraint wf.

One standard technique for dealing with such left-recursion is memoization [14, 131. But there are two
related problems in applying the standard logic programming memoization techniques to this problem.

First, because the standard methods memoize and evaluate at the level of an individual literal, the
granularity at which they apply memoization is is to small. As noted above, in general individual wf or y
literal can have an infinite number of answer substitutions. The lemma table proof procedure circumvents
this problem by memoizing conjunctions of literals (in this example, a conjunction of wf and y literals which
has only a finite number of subsumption-incomparable valid instances).

The second problem is that the standard memoization techniques restrict the order in which literals can
be resolved. In general, these restrictions prevent the "goal delaying" required to co-routine among several

142

cons•aints. The lemma table proof procedure lifts this restriction by allowing arbitrary selection rules.

3 The Lemma Table proof procedure

LiUe the sarley Deduction and the OLDT proof procedures, the Lemma Table proof procedure maintains
a klem table that records goals and their corresponding solutions. After a goal has been entered into the
lemma table, other occurences of instances of that goal can be reduced by the solutions from the lemma
table instead of the original program clauses.

We now turn to a formal presentation of the Lemma Table proof procedure. In what follows, lower-case
letter are used for variables that range over atoms. Upper-case letters are used for variables that range over
go*l., which are sets of atoms. Goals are interpreted conjunctively; a goal is satisfied iff all of its members
are.

A goal 0 subsumes a goal C' iff there is some substitution 9 such that a' = GO. (Note that m.g.u.'s for
sets of goals are in general not unique even up to renaming).

The "informational units" manipulated by the lemma table proof procedure are called generalized clauses.
A generalized clause is a pair of goals, and is written 01 '- G2. 01 is called the head of the clause and 02 is
called the body. Both the head and body are interpreted conjunctively; i.e., 01 4- C2 should be read as "if
each of the 02 are true, then all of the Gi are truer. A generalized clause has a natural interpretation as a
goal subject to constraints: G1 is true in any interpretation which satisfies the constraints expressed by 02.

A lemma table is a set of table entries of the form (C, T, S), where

1. C is a goal (this entry is called a table entry for G),

2. T is a lemma tree (see below), and

3. S is a sequence of clauses, called the solution list for this entry.

A lemma tree is a tree constructed by the algorithm described below. Its nodes have two labels. These
are

1. a clause A -- B, called the clause labelling of the node, and

2. an optional tag, which when present is one of solution, program(b) for some b E B, or table(B',p) where
0 C B' C B and p is either the null pointer nil or a pointer into a solution list of a table entry for some
C that subsumes B'.

Untagged nodes are nodes that have not yet been processed. All nodes are untagged when they are
created, and they are assigned a tag as they are processed. The tags indicate which kind of resolution
has been applied to this clause. A node tagged program(b) is resolved against the clauses defining b in the
program. A node tagged table(B',p) is resolved against the instances of a table entry E for some goal that
subsumes B'; the pointer p keeps track of how many of the solutions from E have been inserted under this
node (just as in OLDT resolution). Finally, a node tagged solution is not resolved, rather its clause labelling
is added to the solution list for this table entry.

Just as SLD resolution is controlled by a selection rule that determines which literal will be reduced next,
the Lemma Table proof procedure is controlled by a control rule R which determines the next goal (if any)
to be reduced and the manner of its reduction.

More precisely, R must tag a node with clause labelling A - B with a tag that is either solution,
program(b) for some b E B, or table(B', nil) such that 0 C B' C B. Further, R must tag the root node
of every lemma tree with the tag program (b) for some b (this ensures that some program reductions are per-
formed in every lemma tree, and hence that a lemma table entry cannot be used to reduce itself vacuously).

Finally, as in OLDT resolution, the Lemma Table proof procedure allows a user-specified abstraction
operation a that maps goals to goals such that a(G) subsumes G for all goals G. This is used to generalize
the goals in the same way as the term-depth abstraction operation in OLDT resolution, which it generalizes.

The Lemma Table proof procedure can now be presented.

Input: A non-empty goal C, a program P, an abstraction operation a, and a control rule R.

143

Output: A set -f of clauses of the form G' -- C, where C' is an instance of G.

Algorithm: Create a lemma table with one table entry (G, T, D), where T contains a single untagged node
with the clause labelling G 4- G. Then repeat the following operations until no operation applies.
Finally, return the solution list from the table entry for G.

The operations are as follows.

Prediction Let t be an untagged node in a lemma tree T of table entry (G, T, S), and let V's clause
labelling be A .- B. Apply the rule R to v, and perform the action specified below depending on
the form of the tag R assigned to v.

solution: Add A4- B to the end of the solution list S.

program(b) : Let B' = B - (b). Then for each clause b' *- C in P such that b and b' unify with a
m.g.u. 0, create an untagged child node v' of v labelled (A ,- B' U C)d.

table(B', nil) : The action in this case depends on whether there already is a table entry (G', 7, S')
for some C' that subsumes B'. If there is, set the pointer in the tag to the start of the sequence
S'. If there is not, create a new table entry (a(B'), 7", D), where 7" contains a single untagged
node with clause labelling a(B') +- a(B'). Set the pointer in v's tag to point to the empty
solution list of this new table entry.

Completion Let v be a node with clause labelling A - B and tagged table(B',p) such that p points
to a non-null portion S' of a solution list of some table entry. Then advance p over the first
element B" C- of S' to point to the remainder of S'. Further, if B' and B" unify with m.g.u. 0,
then add a new untagged child node to v labelled (A - (B - B') U C)8.

It may help to consider an example based on the program in Figure 1. The computation rule R used
is the following. Let v be a node in a lemma tree and let A -- B be its clause label. If v is the root of
a lemma tree and B contains a literal of the form y(T, SO, S) then R(v) = program(y(T, SO, S)). If B is
empty then R(v) = solution (no other tagging is possible for such nodes). If B contains a literal of the
form wf(T, C) where T is a non-variable then R(v) = program(wf (T, C)) (there is never more than one such
literal). Otherwise, if B contains two literals of the form wf(T, C), y(T, SO, S) where SO is a non-variable,
then R(v) = table({wf(T, C), y(T, SO, S)}, nil). These four cases exhaust all of the node labelling encountered
in the example.'

Figure 3 depicts the completed lemma table constructed using the rule R for the goal wf(Tree.s).
y(Tree.[kim.walks].O). To save 3pace, kim and walks are abbreviated to k and w respectively. Only the
tree from each table entry is shown because the other components of the entry can be read off the tree. The
goal of each table entry is the head of the clause labelling its root clause, and is shown in bold face. Solution
nodes are shown in italic face. Lookup nodes appear with a dashed line pointing to the table entry used to
reduce them.

The first few steps of the proof procedure are the following; each step corresponds to the circled node of
the same number.

(1) The root node of the first table entry's tree restates the goal to be proven. Informally, this node
searches for an S located at the beginning of the utterance. The literal y(Tree.[kimwalks],.) is selected
for program reduction. This reduction produces two child nodes, one of which "dies" in the next step
because there are no matching program nodes.

(2) The reduction (1) partially instantiates the parse tree Tree. The literal wf(C/[T1,T2]) is selected for
program reduction.

(3) This produces a clause body that contains literals that refer to the subtree TI and literals that refer
to the subtree T2. The computation rule in effect partitions the literals and selects those that refer to
the subtree Ti (because they are associated with an instantiated left string argument).

IVAhe used with s program eDcding a context-free grammars in the manner of Figure 1, the Lemma Table proof procedure with
the oontrol rule R simulatm Erley's CFG parsing algorithm 131. The operations in the Lemma Table proof procedure are named after
the correspowng operations of Earley's algorithm.

144

wf(Trre,s), yCrree~kwlOn) -wf(Trbe.s), YJrrerk.IJ

wf(C4TI.jA y(CiJTIT]k~w~j]) +- wf(C/ITIT2J.s). y(CTIT21.t2k~wJ.[l) 4-

wf(s4T1.T2].s). yWITr1.T'2j .fk~wj .I +- 0
w[(T1I~n2 wf(M2vp)yT.[c~k~wL.S1 y(M2S1.(J) - -,

wf(s/Inp-kbimj2J.s). y(sAnp-kim.2j ,jk~w].fl) %-

wflsllnlp-k,vplfv-w)).s). Y(S/(npwk.vp/fv-w))jk~w),/)) +- 0 ,

wf(T,np), y(T,(k,wJ,S)+-wf(r.np), [~rkwL].SI: -

wf(C-k.np), y(C-k[k~wl.[wl) 4- wf(C/ITITT2].np). y(CiTIT.T2].[k~w].S) 4-

zfIc-LnDI .Iwf(Cl.T22Lnipy(rl.[k~wJSl), y(T,.S) X)
wflnp-.kpir). y~pp-kjk~wjjwJ))4- 0(2 (j wf(np/[T1Tl .77]) y(npjtl?1[~wr)4

wflTI.MpI wfc 2,n),yffjInLw .SI y(T2,S1,S)

Wf(CjITI.np) y(C/T1,[k~w],S) 4-wf(np/!np-k.T21.np), y(npArp-k.T21.np) 4-

wf(T,n), y(T,jwM,) +- wf(T~n), vcr.f w1.S) ----------- -

wf(C-w~n), yC-wjw].[D4-wf(CITTI ,T2].n). y(C/TT1fwS)

wf(C/[TI n),n) y(C/ITI],IwJ,S) 4- ---- ---

wf(Cr/p) yT,[WJS 4-I~w

wfC- fp) (C~v),wc,Iw].fl wf4-p) y f(CIIT1I)p)4wy-------------4

wf(C4TITZ.vp). y(CIIT1.TJ[JS 4- wf(vg(TIJ,vp), y(vp/TI1 jw,(.S) +- -

I L 2Y ~ y T . w , I.(T , 1S 11v (lf]S

wf(/[T.71.v).y~cIT-T~-[],S+-wft~.p4IlvwJvp). y(vp/[lv.lwJ,(w,() - 0-

wt(T,v), y(iTjwJ -f V).~L 5 X4-----------------------

wf(C-w,v). Y(C-w.(wl.(J) +- wf(C/[TIT2].v). y(C/[TlT21,[wJ.S) 4-

WJT-W.).Y(VWtltl +-o f(CITI, f yc4III.fl]. yTItwS1)

w~¶'vw~v),~%v-4'wJ4)~ 0 wf(C/!T1IIv), y(C/TI].[w)S)4

Figure 3: A lemma table for wf(Tree~s). y(Tree,[kim~walksj.fl)

145

(4) A new table entry is created for the literals selected in (3). Informally, this entry searches for an NP
located at the beginning of the utterance. Because this node is a root node, the literal y(T°jkimwalks].S)
is selected for program expansion.

(5-6) The literals with predicate wf are selected for program expansion.

(7) The body of this node's clause label is empty, so it's label is added to the solutions list of the table
entry. Informally, this node corresponds to the string [kim] having been recognized as an NP.

(8) The solution found in (7) is incorporated into the tree beneath (3). A new table entry is generated to
search for a VP spanning the string [walks].

(9) Just as in (3), the literals in the body of this clause's label refer to two distinct subtrees, and as before
the computation rule selects the literals that refer to T1. However there is already a table entry (4)
for the selected goal, so a new table entry is not created. The solutions already found for (4) generate
a child node to search for an N beginning at walks. No solutions are found for this search.

4 Soundness and Completeness

This section demonstrates the soundness and completness of the lemma table proof procedure. Soundness
is straight-forward, but completeness is more complex to prove. The completeness proof relies on the notion
of an unfolding of a lemma tree, in which the table nodes of a lemma tree are systematically replaced with
the tree that they point to. In the limit, the resulting tree can be viewed a kind of SLD proof tree, and
completeness follows from the completeness of SLD resolution.

Theorem 1 (Soundness) If the output of lemma table proof procedure contains a clause G -- C, then
P = C--*G.

Proof: Each of the clause labels on lemma tree nodes is either a tautology or derived by resolving other
clause labels and program clauses. Soundness follows by induction on the number of steps taken by the proof
procedure. 0

As might be expected, the completeness proof is much longer than the soundness proof. For space reasons
it is only sketched here.

For the completeness proof we assume that the control rule R is such that the output -f of the lemma
table proof procedure contains only clauses with empty bodies. This is reasonable in the current context,
because non-empty clause bodies correspond to goals that have not been completely reduced.

Then completeness follows if for all P, G and u, if P • Ga then there is an instance G' on the solution
list that subsumes Ga.

Further, without loss of generality the abstraction operation a is assumed to be the identity function on
goals, since if a(G(i)) = G(t%), the goal G(t can be replaced with the equivalent G(ti) u {I = i) and a taken
to be the identity function.

Now, it is a corollary of the Switching Lemma 111, pages 45-47] that if P I- Go then there is an n
such that for any computation rule there is an SLD refutation of G of length n whose computed answer
substitution G subsumes a. We show that if 0 is a computed answer substitution for an SLD derivation of
length n then there is a node tagged solution and labelled GB 4- 0 in lemma tree T for the top-level goal.

First, a well-formedness condition on lemma trees is introduced. Every lemma tree in a lemma table at
the termination of the lemma table proof procedure is well-formed. Well-formedness and the set of nodes
tagged solution are preserved under an abstract operation on lemma trees called expansion. The expansion
of a lemma tree is the tree obtained by replacing each node tagged table(B',p) with the lemma tree in the
table entry pointed to by p.

Because expansions preserves well-formedness, the lemma tree 7' resulting from n iterated expansions of
the lemma tree T for the top-level goal is also well-formed. Moreover, since the root node of every lemma
tree is required to be tagged program, all nodes in T" within distance n arcs of the root will be tagged program
or solution. This top part of 7" is isomorphic to the top part of an SLD tree T, for G, so if e is a computed
answer substitution for an SLD derivation in T, of length n or less then there is a node tagged solution and
labelled GB 4- 0 in T2, and hence T. Since n was arbitrary, every SLD refutation in T. has a corresponding
node tagged solution in T' and hence in T.

146

5 Conclusion

This paper generalizes standard memoization techniques for logic programming to allow them to be used for
constraint logic programming. The basic informational unit used in the Lemma Table proof procedure is the
generalized clause G +- C. Generalized clauses can be given a constraint interpretation as "any interpretation
which satisfies the constraints C also satisfies G". The lemmas recorded in the lemma table state how sets
of literals are reduced to other sets of literals. Because the heads of the lemmas consist of sets of literals
rather than just individual literals, the lemmas express properties of systems of constraints rather than just
individual constraints. Because the solutions recorded in the lemma table can contain unresolved constraints,
it is possible to pass constraints out of a lemma into the superordinate computation.

In this paper G and C were taken to be sets of literals and the constraints C were defined by Horn
clauses. In a more general setting, both G and C would be permitted to contain constraints drawn from a
specialized constraint language not defined by a Horn clause program. H6hfeld and Smolka [51 show how to
extend SLD resolution to allow general constraints over arbitrary domains. Their elegant relational approach
seems to be straight-forwardly applicable to the Lemma Table proof procedure, and would actually simplify
its theoretical description because equality (and unification) would be treated in the constraint system.
Unification failure would then be a special case of constraint unsatisfiability, and would be handled by the
"optimization" described by Hofeld and Smolka that permits nodes labelled with clauses C - C to be deleted
if C is unsatisfiable.

References
[1] Chen, W. and D.S. Warren. 1989. C-Logic of Complex Objects. ms. Department of Computer Science,

State University of New York at Stony Brook.

[2] Chomsky, N. 1986. Knowledge of Language: Its nature, origins and use. Praeger. New York.

13] Earley, J. 1970. "An efficient context-free parsing algorithm", in Comm. ACM 13:2, pages 94-102.

[4] Giannesini, F., H. Kanoiui, R. Pasero and M. van Canegham. 1986. Prolog. Addison-Wesley. Reading,
Massachusetts.

[5] H1hfeld, M. and G. Smolka. 1988. Definite Relations over Constraint Languages Lilog report 53, IBM
Deutschland.

161 Johnson, M. 1989. "The Use of Knowledge of Language", in Journal of Psycholinguistic Research, 18.1.

[7] Johnson, M. 1990. "Features, frames and quantifier-free formulae", in P. Saint-Dizier and S. Szpakowicz,
eds., Logic and Logic Grammars for Language Processing, Ellis Horwood, New York, pages 94-107.

[8] Johnson, M. 1991. "Deductive Parsing: The Use of Knowledge of Language", in R.C. Berwick, S.P.
Abney and C. Tenny, eds., Principle-based Parsing: Computational and Psycholinguistics, Kluwer Aca-
demic Publishers, Dordrecht, pages 39-65.

[91 Johnson, M. 1991. "Techniques for deductive parsing", in C.0. Brown and C. Koch, eds., Natural
Language and Logic Programming III, North Holland, Amsterdam, pages 27-42.

[101 Johnson, M. 1992. "The left-corner program transformation", ms., Brown University.

[11] Lloyd, J. 1984. Foundations of Logic Programming. Springer-Verlag, Berlin.

1121 Matsumoto, M., H. Tanaka, H. Hirakawa, H. Miyoshi and H. Yasukawa. 1983. "BUP: a bottom-up
parser embedded in Prolog", in New Generation Computing 1:2, pages 145-158.

[13] Pereira, F. and S. Shieber. 1987 Prolog and Natural Language Analysis. CSLI Lecture Notes Series,
Chicago University Press.

114] Pereira, F. and D.H. Warren. 1983. "Parsing as Deduction", in Proceedings of the 21st Annual Meeting
of the Association for Computational Linguistics. MIT, Cambridge, Mass.

147

1151 Shieber, S. 1985. Introduction to Unisfcation-based theories of Grammar. CLSI Lecture Notes Series,
Chicago University Press.

116] Smolka, G. 1992. "Feature Constraint Logies for Unification Grammars", in The Journal of Logic Pro-
grmmsng 12:1-2, pages 51-87.

[17] Tamaki, H. and T. Sato. 1986. "OLDT resolution with tabulation", in Procee•inga of Third International
Conference on Logic Programming, Springer-Verlag, Berlin, pages 84-98.

118) Vieille, L. 1987. "Database-complete proof procedures based on SLD resolution", in Logic Programming:
Proceedings of the fourth international conference, The MIT Press. Cambridge, Massachusetts.

[19] Vieille, L. 1989. "Recursive query processing: the power of logic", Theoretical Computer Science 69,
pages 1-53.

[20] Warren, D. S. 1992. "Memoing for logic programs", in Communications of the ACM 35:3, pages 94-111.

148

Local Consistency in Parallel Constraint-Satisfaction Networks

Simon Kasif Arthur L. Delcher

Department of Computer Science Computer Science Department
The Johns Hopkins University Loyola College in Maryland

Baltimore, MD 21218 Baltimore, MD 21210
kasi14cs jhu. *du delchertloyola. edu

Abstract

We summarize our work on the parallel complexity of local consistency in constraint networks, and
present several basic techniques for achieving parallel execution of constraint networks. We are interested
primarily in developing a classification of constraint networks according to whether they admit massively
parallel execution. The major result supported by our investigations is that the parallel complexity of
constraint networks is critically dependent on subtle properties of the network that do not influence its
sequential complexity.

1 Introduction
In this position paper we summarize our work on the parallel complexity of local consistency in constraint
networks [Kas9O, Kas86, Kas89, KRS87, KD90]. Our research is aimed at deriving a precise characterization
of the utility of parallelism in such networks. We are interested primarily in developing a classification
of constraint networks according to whether they admit massively parallel execution. We have analyzed
parallel execution for chain networks, tree networks, two-label networks, directed-support networks and path
consistency in general networks. For example, we show that contrary to common intuition, chain networks
do admit fast parallel solutions (as in fact do all acyclic graphs). While the obvious parallel algorithm for
local consistency in constraint networks should work well in practice, we would like to obtain lower and
upper bounds on the complexity of the problem on ideal parallel machines (such as the PRAM).

This study may have significant practical implications since it should indicate which parallel primitives
are fuldamental in the solutions of large constraint systems. Once such primitives are implemented in
hardware, they execute in essentially constant time for all practical purposes, e.g., parallel prefix on the
Connection Machine. The original design of the Connection Machine was motivated by these considerations.
The ultimate goal of our research is to produce a set of primitives that are critical to the solution of constraint
problems.

2 Constraint Satisfaction, Local Consistency and Discrete Re-
laxation

Constraint satisfaction networks are used extensively in many Al applications such as planning, schedul-
ing, natural language analysis, truth-maintenance systems, and logic programming JdK86, HS79, Mac77,
RRZ76, Win84, VH89a]. These networks use the principle of local constraint propagation to achieve global
consistency (e.g., consistent labelling in vision).

A constraint satisfaction network can be defined as follows. Let V = {X 1 , ... , X,I} be a set of variables.
With each variable Xi we associate a set of labels Li. Now let {RX3} be a set of binary predicates that
define the compatibility of assigning labels to pairs of variables. Specifically, RP• (a, b) = 1 iff the assignment
of label a to X1 is compatible with the assignment of label b to Xj.

The Constraint Satisfaction Problem (CSP) is defined as the problem of finding an assignment of labels
to the variables that does not violate the constraints given by {&J}. More formally, a solution to CSP is a

149

vector (a,, ... a ,.) such that ai is in Li and for each i and j, Rj (aj,a,) = 1.
A standard approach to model CSP problems is by means of a constraint graph, (e.g., v. [Mac77,

Mon74]). The nodes of the constraint graph correspond to variables of the constraint network, and the edges
correspond to the binary constraints. In this context, each edge in the constraint graph is labelled with a
matrix that shows which assignments of labels to the objects connected by that edge are permitted. In this
interpretation CSP can be viewed as generalised graph coloring.

Since CSP is known to be AO'P-complete, several local-consistency algorithms have been used extensively
to filter out impossible assignments.

Arc consistency allows an assignment of a label a to an object X if for every other object X' in the
domain there exists a valid assignment of a label a' which does not violate the constraints [Mac77, Mon74].
More formally, we define arc consistency as follows.

Given a constraint network, a solution to the local version of CSP or arc consistency (AC) is a vector
of sets (MI, ... ,M,) such that Mi is a subset of Li and label a is in Mi if for every Mj, i 0 j there is
a label b in Mi, such that Rj (a, b) = 1. Intuitively, a label a is assigned to a variable iff for every other
variable there is at least one valid assignment of a label to that other variable that supports the assignment
of label a to the first variable.

We call a solution (MI, ... , M,,) a mazimal solution for AC iff there does not exist any other solution
(S , , S,) such that Mi 5_ S, for all I < i < n. We are interested only in maximal solutions for an
AC problem. By insisting on maximality we guarantee that we are not losing any possible solutions for the
original CSP. Therefore, in the remainder of this paper a solution for an AC problem is identified with a
maximal solution. The sequential time complexity of AC is discussed in [MF85, MH86, Kas90]. Discrete
relaxation is the most commonly used method to achieve local consistency. Starting with all possible label
assignments for each variable, discrete relazation repeatedly discards labels from variables if the AC condition
specified above does not hold.

3 Parallel Processing of Constraint Networks

The standard approach for achieving arc consistency is the following discrete-relaxation procedure:

Procedure Parallel-AC

Step 1 Start by setting Mi = Li, for 1 <i <n.

Step 2 Repeat the following:

For each constraint between Xi and Xj test whether for each label a E Mi
there exists a label b E Mj that permits it. If there is no such b then remove
a from Mi.

until no label is removed from any Mi.

It is easy to see that this algorithm will terminate in O(EK'nK) time, where E is the number of edges
in the constraint-network graph and K is the number of labels for each variable, (recall that EKV is the size
of the input). In fact, much better sequential algorithms for the problem are discussed in [MF85, MH86,
Kas89, Kas90].

Clearly procedure Parallel-AC can be parallelized in a straightforward way. If we assume a CRCW
PRAM as our model of parallel computation,1 we have the following simple result:

Claim: The parallel complexity of procedure Parallel-AC is O(nK) on a CRCW PRAM with EK 2 pro-
cessors.

Proof: Simply assign K processors to each arc and label, and perform the test for arc consistency in
Step 2 in parallel. Arc consistency is essentially a logical OR on set membership of a set of labels, and
can be performed in constant time on a CRCW PRAM. At each parallel step, if the algorithm does not
halt, then at least one label must be dropped and there are a total of nK labels. 0

1 CRCW PRAM is a standard shared-memory parallel computation model that permits concurrent reads and writes into the
same location. Concurrent writes are permitted if they agree on the data being written.

150

On a more realistic model of computation, such as an EREW (exclusive read/exclusive write) PRAM, we
can perform the above procedure in O(nK log K) parallel time, the extra log K factor being required to
compute the logical OR.

It is easy to see that the procedure above has a lower bound of nK steps, i.e., in the worst case it does
not fully parallelise in the sense of achieving polylogarithmic parallel time. As a simple example, consider
a chain constraint graph. In [Kas90] we proved the following much stronger result, namely, that AC is
inherently sequential in the worst case for general constraint networks.

Theorem 1: (Kasif 90) The propositional Horn clause satisfiability problem is log-space reducible to the
AC problem. That is, AC is P-complete.

Local consistency belongs to the class of inherently sequential problems called log-space complete for P
(or 'P-complete). Intuitively, a problem is P-complete iff a polylogarithmic-time parallel solution (with a
polynomial number of processors) for the problem will produce a polylogarithmic-time parallel solution for
every deterministic polynomial-time sequential algorithm. This implies that unless V = A(C (A(C is the class
of problems solvable in polylogarithmic parallel time with polynomially many processors) we cannot solve the
problem in polylogarithmic time using a polynomial number of processors. The above theorem implies that
to achieve polylogarithmic parallel time one (probably) would need a superpolynomial number of processors.
We emphasize that this is a worst-case result and indeed several groups have reported successful experiments
with massively parallel constraint processing [DdK88, SH87, VH89b].

We first make an observation which is critical to the understanding of the procedural semantics, and
consequently the complexity, of achieving arc consistency. In [Kas86, Kas89, Kas90] we provided a two-
way reduction between arc consistency and Propositional Horn Satisfiability (PHS). Specifically, given a
constraint satisfaction problem S one can construct a propositional Horn formula (AND/OR graph) C such
that arc consistency of S can be achieved by (essentially) running a satisfiability algorithm for G. For a
formal construction see [Kas90. We sketch the intuition here. For each label a and a variable X we construct
a propositional atom Px,, which means a drops from X. We also use a propositional atom Qx,.,y to mean
that variable Y has no label that supports label a in X. Consider, for example, a variable X connected in
the constraint graph to variables Y and Z. Assume that Y has labels a,, a2 and Z has labels a3, a4 that
support a at X. Thus, we construct the formulae:

Px,t 4- Qx,.,y
Px,a 4" Qx,.,z

QX,,y - Py,^, A Py,o,
Qx,.,z - Pz,. A Pz,..

We can apply one iteration of procedure Parallel-AC to determine which labels will be dropped initially.
Note that if the constraint graph has E edges and K labels per variable, the size of the formulae

is potentially EK2 . More importantly, the sequential complexity of solving satisfiability of this graph is
O(EK2) (see [Kas901 for details). This is a slight improvement over the result in (MF851 and it matches
the algorithm in [MH86]. The advantage is that we can use this reduction to derive optimal algorithms for
AC when the resulting Horn-clause formula is of small sise. Thus, for example, when the size of the formula
is O(EK) we get an O(EK) algorithm. We also can devise efficient parallel algorithms when the resulting
Horn-clause formula has some special graph structure. Note that this reduction is from AC to PHS, as
opposed to the reduction from PHS to AC used to prove Theorem 1.

4 AC in Dense Graphs

It has been noted by several researchers that for many P-complete problems such as depth-first search,
circuit evaluation and unification, optimal speed-up is possible if the underlying graph is very dense, i.e.,
the number of edges in the graph is quadratic [VS86]. We illustrate this simple principle with an example.
Assume we are given a boolean circuit that consists of NAND gates only. The circuit contains N gates and
E edges. We also are given an input to the circuit. Clearly, any sequential algorithm must take O(E) time
to evaluate this circuit. The standard technique for evaluating circuits uses a counter for each gate. The
initial value of the counter is set to the number of inputs the gate has. We maintain a queue of gates whose

151

value has been computed (initially, just the input gates). We pick any gate on the queue and traverse all
its outgoing edges. For each such edge we decrement the counter associated with the gate incident to the
edge and drop the edge. If the counter becomes zero we simply add the gate to the queue. Note that this
simple algorithm is in fact the same algorithm that yields optimal sequential time for both PHS and AC
[MH86]. PHS and AC problems may generate circuits with cycles but this does not fundamentally change
the algorithm, as was pointed out in [Kas9O].

But now consider a brute-force parallel algorithm, where we essentially perform the sequential algorithm,
with one exception. When we choose a gate g from the queue we use N processors to update the counters
of all the gates that are connected to g. This can be trivially done in constant time on a PRAM (parallel
shared-memory machine). When any counter becomes zero, we add the gate to the queue as in the sequential
version (on some models of parallel computation the above two steps may take logarithmic time). Since we
are visiting at most N nodes the procedure terminates in O(N) steps using N processors. Thus we achieve
linear speed-up when the number of edges in the circuit is O(N 2). This observation holds for Propositional
Horn Satisfiability. It also holds for Arc Consistency and Path Consistency by using the reduction to
Propositional Horn Satisfiability (or circuit evaluation). For AC, this observation yields 0(nK) performance
with vaK processors (details are left as an exercise to the reader).

Theorem 2: AC can be solved in 0(nK) time with nK processors.

The algorithm above will work well on any machine that can support broadcasts (to implement traversing
edges) and some kind of fast selection operation (to pick the next node from the queue). Parallel prefix on
the connection machine can support both primitives efficiently in logarithmic time. Note, that the parallel
algorithm described above can be improved in practice by retrieving (in parallel) all nodes (gates) from the
queue. Thus, for a tree-structured graph we will achieve performance proportional to the depth rather than
the size of the tree.

5 Summary of Parallel AC Results

In this section we summarize our knowledge of the parallel complexity of computing local consistency in
constraint satisfaction problems. The results appear in Tables 1 and 2. We have classified the parallel
complexity of problems into two classes: 'P-complete problems and MA(C problems. 'P-complete problems
are perceived to be difficult to parallelise (in the same sense that "A/-complete problems are considered
intractable), and M/C problems can be solved in polylogarithmic time with a polynomial number of processors.
ArC problems are often amenable for optimal speed-up on parallel machines. In both tables R denotes the
binary compatibility predicate.

The main practical conclusions that we can draw from our study are as follows:

1. Local consistency in constraint networks is generally 'P-complete. Practical experience suggests that
it is difficult to obtain optimal parallel algorithms for such problems. By optimal parallel algorithms
we mean algorithms that obtain P-fold speed-up of the best sequential algorithm with P processors.
However, it is often easy to obtain optimal speed-ups for these (and other) problems when the number
of processors is small.

2. Substantial speed-ups for parallel local consistency algorithms are possible if the constraint graph is
dense. This can be accomplished using a simple obvious algorithm which is likely to be efficient in
practice. Specifically, given a constraint network with n nodes and K labels per node, it is easy to
obtain an 0(nK) algorithm for arc-consistency with nK processors on a shared-memory parallel model
of computation.

3. The application of the obvious parallel version of the arc-consistency algorithm to such networks does
not yield a sublinear algorithm. The parallel complexity of local consistency in chain networks has
been shown equivalent to reachability problems in directed graphs. While this class of networks can
theoretically be solved very fast, in practice our results imply that the "transitive closure" bottleneck
may apply to chain networks. It currently is not known how to get optimal speed-ups for transitive
closure problems in graphs unless the number of processors is smaller than the number of nodes in the
graph.

152

Table 1: Complexity of Arc Consistency for Arbitrary-Size Label Sets

Arbitrary K (K is the size of the label set L)

G CSP AC

Undirected R's: AC; reachability

Chain At; reachability Directed R's: P-complete;
reduction from Propositional
Horn-Clause Solvability

Undirected R's: A(C; like
expression eval where operation

Tree A/rC at each node is intersection of
sets of support for each label.

Directed R's: P-complete; from
above

Undirected R's: AIC; cycle

Simple Cycle A/C; reachability detection
Directed R's: P-complete; from

above

Undirected R's: P-complete;

A/P-complete; seduction from reduction from Propositional
Arbitrary Graph graph colouring Horn-Clause SolvabilityDirected R's: P-complete; from

above

Table 2: Complexity of Arc Consistency for Fixed-Size Label Sets

Fixed K (K is the size of the label set L)

G CSP AC

Chain A/C Undirected R's: AMC
Directed R's: AC

Tree At Undirected R's: .MC
Directed R's: A/C; from above

Simple Cycle AMC Undirected R's: A/C
Directed R's: A/C; from above

Undirected R's: For K = 2, A/C by
K = 2: Linear sequential algorithm reachability along "singleton

by reduction to 2-SAT which is paths"; For K > 3, P-complete
Arbitrary Graph At from Propositional Horn-Clause

K > 3: A"P-complete; reduction Solvability
from 3-colouring graphs Directed R's: P-complete for

I K>2

153

4. For tree networks we suggested several algorithmrn tziist achieve sublinear time with many parallel
processors. We have been unable to find an obvious :-.-ýctical algorithm to achieve optimal speed-up
in tree networks.

5. We provided a reduction from i-consistency to propositional Horn satisfiability which allows us to
derive optimal sequential algorithms for problems such as path consistency in a simple manner.

Ackmowledgements This research has been supported partially by the Air Force Office of Scientific Re-
search under grant AFOSR-89-1151 and the National Science Foundation under grant IRI-88-09324. Thanks
are due to David MeAllester, Judea Pearl and Rina Dechter for their constructive comments.

References
[DdK88] M. Dixon and J. de Kleer. Massively parallel assumption-based truth maintenance. In Proceedings

of AAAI-88, pages 199-204, 1988.

[dK86] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127-162, 1986.

[HS79] R. M. Haralick and L. G. Shapiro. The consistent labeling problem: Part I. IEEE Trans. Patt.
Anal. Mach. Intel., PAMI-1:173-184, 1979.

(Kas86] S. Kasif. On the parallel complexity of some constraint satisfaction problems. In Proceedings of
the 1986 National Conference on Artificial Intelligence, August 1986.

[Kas89] S. Kasif. Parallel solutions to constraint satisfaction problems. In Principles of Knowledge Repre-
sentation and Reasoning, May 1989.

[Kas90] S. Kasif. On the parallel complexity of discrete relaxation in constraint networks. Artificial Intel-
ligence, pages 229-241, 1990.

[KD90] S. Kasif and A. Delcher. Analysis of local consistency in parallel constraint networks. Artificial
Intelligence (to appear), also in 1991 AAAI Symposium on Constraint Based Reasoning, pp. 154-
163, 1990.

[KRS87] S. Kasif, J. Reif, and D. Sherlekar. Formula dissection: A parallel algorithm for constraint satisfac-
tion. In Proceedings of the 1987 IEEE Workshop on Computer Architecture for Pattern Analysis
and Machine Intelligence, October 1987.

[Mac77] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99-118, 1977.

[MF85] A. K. Mackworth and E. Freuder. The complexity of some polynomial network consistency algo-
rithms for constraint satisfaction. Artificial Intelligence, 25:65-74, 1985.

1ME86] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelligence, 28:225-

233, 1986.

[Mon74] U. Montanani. Networks of constraints: Fundamental properties. Inform. Sci., 7:727-732, 1974.

(RHZ76] A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation operations. IEEE Trans.
Syst. Man Cybern., SMC-6:420-433, 1976.

ISH87] A. Samal and T.C. Henderson. Parallel consistent labelling algorithms. International Journal of
Parallel Programming, 16:341-364, 1987.

[VH89a] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

(VH89b] P. Van Hentenryck. Parallel constraint satisfaction in logic programming. In Proceedings of the
International Conference on Logic Programming, 1989.

154

[VS86] J. S. Vitter and R. A. Simons. New classes for parallel complexity: A study of unification and
other complete problems in P. IEEE Transactions on Computers, C-35(5):403-418, 1986.

[Win84) P. H. Winston. Artificial Intelligence. Addison-Wesley, 1984.

155

Exploiting Constraint Dependency Information

For Debugging and Explanation

Walid T. Keirouz, Glenn A. Kramer, Jahir Pabon

Schlumberger Laboratory for Computer Science
8311 North RR 620

PO Box 200015
Austin, TX 78720-0015

{walid,gakjahiri austin.slcs.slb.com

Abstract

Constraint programming is another form of programming and, as such, should be supported by appro-
priate environments that provide debugging, explanation and optimization capabilities. We are building
tools needed for such an environment and using them in the context of geometric constraint programming
for graphics and mechanical design. In this paper, we present the components of such an environment and
their capabilities. We describe the use of constraint dependency graphs for debugging and explanation,
and present an algorithm for identifying constraints that cause a model to be over-constrained.

1 Introduction

Constraints between entities in a model form a declarative specification that is used by a constraint solver to
satisfy and maintain relations between entities in the model. The solution steps taken by a solver to satisfy
these constraints can be collected in a "solution plan" and can be viewed as a procedural program for solving
these constraints. Thus, a constraint model forms a declarative specification of a procedural program that is
generated automatically to solve the model's constraints. As such, constraint programming is another form
of programming and should be supported by appropriate environments that support debugging. explanation
and optimization. We are building tools needed in such an environment and using them in the context of
geometric constraint programming for graphics and mechanical design.

Graphics was one of the first domains to which constraint-based techniques were applied [Sutherland,
1963; Borning, 1979]. Since then, commercial constraint-based computer-aided design (CAD) systems have
emerged [Mills, 1992]. While they are considered far superior to previous CAD tools, engineers experience
difficulty understanding the constraint models that underlie their designs (constraints may be specified by
users or inferred by CAD systems). At times, the constraints in a large model becomne so confusing that
a designer might scrap a design and start anew [Tee, 1992]. Furthermore, when a designer returns to the
same design several months later, there is no record of how the constraints were solved and what the design
dependencies are; the designer must rediscover the original design intent.

People typically develop their own mental models of the plan of how constraints are satisfied by a
constraint system. However, these models often do not reflect the true solution plan. The difficulties users
encounter are then compounded because there is no way to view and understand the dependencies in the
constraint models they have built.

2 Geometric Constraint Engine

We have developed a Geometric Constraint Engine (GCE) that is currently used in a sketching product
[Belleville, 1992]. GCE is based on research in the use of geometric constraints in kinematics and conceptual

156

Constraint name Explanation

dist:point-point(G,, G2 , d) Distance between point G1 and point G2 is d.

dist:point-line(Gpt, G1, d) Distance between point Gpt and line G1 is d.

dist:point-plane(Gpt, GPI, d) Distance between point Gpt and plane Gpl is d.

dist:hiue-circle(Gt, G,, d) Distance between line G1 and circle Gc is d."

angle:vec-vec(G1 ,G2,a) Angle between vector G, and vector G2 is o.
* In two dimensions, d = 0 represents a tangency constraint.

Table 1: Constraints used in GCE

design [Kramer, 1990; Pabon et al., 1992], and is described in [Kramer, 1992a; Kramer, 1992b). We are
exploring the use of constraint dependency information in the context of GCE.

GCE finds positions, orientations and dimensions of geometric entities in 3D that satisfy a set of con-
straints relating different entity features. Geometric entities can be nested hierarchically in a part-whole
relationship; aggregate entities are composed of combinations of primitive ones-points, vectors and dimen-
sions.

With the exception of dimensional constraints, all constraints used in GCE are binary constraints-
they relate two geometric entities. These constraints may additionally involve real parameters. Examples of
constraints used in GCE are shown in Table 1. Dimensional constraints are unary; they relate one geometric
entity to a real-valued dimension parameter. Constraints may apply to subparts of a given entity. For
example, to constrain two lines to be parallel, one constrains the vectors of those lines to have an angle of
zero.

GCE addresses an issue currently outside the major focus of constraint-based systems research: solving
highly nonlinear constraint problems over the domain of real numbers.' To solve these problems, GCE
imposes an operational semantics for constraint satisfaction in the geometry domain. It does so by employing
a metaphor of incremental assembly: geometric entities are moved to satisfy constraints in an incremental
manner. The assembly process is virtual, as geometric entities are treated as ghost objects that can pass
through each other during assembly. Such an assumption is allowed because the goal of the constraint
satisfaction process is to determine globally-consistent locations of the geometric entities rather than the
paths required for a physical assembly of that geometry.

GCE assembles geometric entities incrementally to satisfy the constraints acting on them. As the
objects are assembled, their degrees of freedom are consumed by the constraints, and geometric invariants
are imposed. An operational semantics is imposed: measurements and actions are used to satisfy each
individual constraint. GCE uses information about an entity's degrees of freedom to decide which constraint
to solve and to ensure that an action being applied to a geometric entity does not invalidate any geometric
invariants imposed by previously-satisfied constraints. This ensures that the solution algorithm is confluent.

The solution algorithms in GCE can handle fully- as well as under- and over-constrained models. The
solution of a set of constraints can be captured as a plan that may be replayed to satisfy the constraints
when one or more numerical constraint parameters are changed.2

3 States of constraint models

A constraint model can be in one or more of several states, which are enumerated here and discussed
subsequently. The following notation will be used: isi denotes line segment i; lip, denotes end-point 1 of

Isi; IiP2 denotes end-point 2 of lsi; vi denotes the direction vector of isi. In the examples in Figure 1, a tick
mark in the center of a line segment denotes a fixed dimension constraint for the line segment, an arc with
label aij denotes and angle constraint between the vectors of isi and Is3 , and coincident end-points in the

1 In the special volume of Artificial Intelligence concerned with constraint-based reasoning, seven of the eleven articles address
the finite constraint satisfaction problem (AIJ, 1992]. Three of the remaining four address problems using a (linear) interval
representation, while [Kramer. 1992b] addresses nonlinear real-valued CSPs.

2Note that some parameter changes can alter the topology of the constraint problem and hence require finding another plan.
For example, in a dist:point-point constraint, changing the distance parameter from zero to non-zero alters the degrees of
freedom removed by the constraint.

157

figure indicate a coincidence constraint exists between those end-points. Using this notation, the possible
states of a constraint model are now enumerated.

A constraint model is fully constrained when there are no remaining degrees of freedom after all con-
straints have been satisfied, and where no constraint in the system is redundant. An example is shown in
Figure 1(a). Here, the length of Is1 is fixed, and two angles are known. This corresponds to using the
"angle-side-angle" formula of elementary geometry to find all parts of a triangle.

A constraint model may be under-constrained. Figure l(b) is similar to Figure 1(a) except that the
dimension of Is1 has been freed. This example describes an infinite family of "similar" triangles, which can
be parameterized by fixing the length of any one of the three line segments.

Over-constrained models result from adding more constraints to a fully constrained model (or by adding
a constraint restricting rn degrees of freedom to a model with n remaining degrees of freedom, where m > n).
Figure 1(c) is similar to Figure 1(a), except that constraint a32 has been added. In this case, we have chosen
032 = X - (013 + 021), so the model is numerically consistent. Identifying and correctly solving such cases is
important in real-world design (e.g., only one hinge is needed to hold a door on a frame in a constraint-based
world; the remaining hinges are mathematically redundant, but are quite useful in the physical world).

Over- and under-constrained situations can coexist in the same constraint model. Figure l(d) shows
such an example. The angles are over-constrained but consistent, as in Figure 1(c), but the lengths are
under-constrained as in Figure l(b).

An over-constrained model can also be inconsistent, as shown in Figure 1(e). Here, the three angle
constraints do not sum to 7r. If a13 and a32 are satisfied, the problem is fully constrained. When Q21 is
asserted, Is2 would need to be rotated to the dashed position to satisfy the new constraint. However, 1s2 is
already fully constrained and hence cannot move to the new position.

Fully constrained systems can be numerically unsatisfiablc, as shown in Figure 1(f). Here, 013 and C21
are chosen so that Is3 and 1s2. both still of indeterminate length, are parallel. Thus, the desired coincidence
constraint between 13P, and 12P2, shown as a dashed line, cannot be satisfied. The number of degrees of
freedom removed from the system by the constraints is the same as in Figure l(a); only the numerical values
have changed.

3.1 Reasoning tasks for consistent models

For fully- and under-constrained models, a user may want to replay the solution with different parameter
values. Single stepping through the constraint solution can help explain the solution to the user, and allow
exploration alternative solutions (by varying the constraint set).

For over-constrained but consistent models, the user may want to compute the sets of over-constraining
constraints to determine which constraints should be removed from the model. The user may also want to
replay portions of the solution, perhaps in single-step mode, to help explain where the over-constraint lies.

3.2 Reasoning tasks for inconsistent models

There are two modes of failure for constraint models. The first one is when the model ,s over-constrained
and inconsistent because of a conflict between some constraints in the model. Tht; model cannot be made
consistent unless some constraints are removed from the model.

In this case, the model's over-constraining set of constraints must be identified, and one constraint from
this set must be selected and removed from the model to alleviate the over-constrained situation. The over-
constraining set is defined as the set of constraints C such that retraction of any constraint in C will remove
the source of over-constraint, and retraction of any constraint not in C has no effect on the over-constraint.
This set includes, but is not limited to, the most recently added constraint3 and the constraints with which
it conflicts directly.

The second failure mode is when a model is not over-constrained, but cannot be satisfied due to numerical
inconsistencies. In this case, we can identify the unsatisfiable constraints. A plan stepper, which is described
below, can then be used to explain where and why the conflict arises.

SAssuming the constraint system is solved each time a new constraint is added.

158

1 2 1\2

SIS3 2 Is3 IS2

2 l \1 a 1 2 a1 3 a2 l

I I2 2Is1
s

(a) fully constrained (b) under-constrained

1 2 1 2

C 03 2

a 3 2

s I . IS3 Is

2 a 13t 1a(21 112 a 13 a2 l

IIi s, Is,

(c) over-constrained (consistent) (d) over- and under-constrained

S.......................................

3a32

Is3 Is, 'S3 IS)

2 all Oa21 2 a1 3 a 21

1 2 1 2
Is, Is 1

(e) over-constrained (inconsistent) (f) numerically unsatisfiable

Figure 1: Various states of geometric constraint systems

159

C4 5

c25 01 s
c23 2

1 2

C13 Is, C12
Cl4

Figure 2: An over-constrained model.

4 Constraint dependency graphs

A constraint system's solution algorithm solves the constraints in a "particular" order that respects the
dependencies built into the model and captures this ordei in a solution plan. However, the captured order is
one of many possible orders in which the constraints may be solved. Ordering relationships can be extracted
from the solution plan and collected into a dependency graph for the constraint model. The solution plan
then describes one of several possible traversals of the nodes in the graph.

Dependency graphs provide a mechanism for constraint dependency analysis which supports debug-
ging and explanation. consistency analysis, user interaction. parameterization of models, and computational
optimization.

4.1 Example: an over-constrained model

Figure 2 shows an over-constrained model. The two triangles are fully determined by the coincidence
constraints for the line segments' end-points, and by the lengths of the line segments (all of which are fixed).
The notation cij indicates one end-point of isi is coincident with one end-point of isj; the end-points are
numbered in the diagram. liP, and v, are fixed in space, which "grounds" the assembly in space. The
two angle constraints are then added: these are redundant and lead to over-constraint. While these angle
constraints are the direct cause of the over-constraint, removing other constraints could alleviate the problem
just as easily.

Figure 3 shows the dependency graph for the model of Figure 2. A special nodt labeled "S" (for
"Start"), is the source node. Square nodes indicate constraints, while circular nodes indicate primitive
geometric entities whose locations have become known-or fixed-by having been moved to satisfy the
constraint immediately preceding it in the graph.

The constraint nodes labeled "g" depict the unary constraints which ground the location of liP, and
the orientation of v1 , as well as the dimensions of all the line segments. The ci2 and aij nodes correspond to
the constraints in Figure 2. The square nodes marked "I" denote inferencc nodes: Since the representation
of line segments is redundant, some information can be inferred after a constraint is satisfied. For example,
given lip,, v1 , %nd dimension d1l, the location of the other end-point lIP2 may be inferred.

In this graph, the dimensions d, and d5 are found through two different paths (one by grounding, and
another by inference from other knowns). These nodes indicate two areas of over-constraint in the model.
Each will have its own over-constraining set, which will be derived in Section 5.1.

5 Debugging and explanation

Debugging and explanation involve analyzing the consistency of a constraint model, analyzing the degrees
of freedom in the model, and replaying and modifying the order in which the constraints are solved.

160

dI d2 di I d3 d

dn 4 I hPI 13P]E-

a2-

V4) ,,

Figure 3: Dependency• graph of example of Figure 2.

161

5.1 Over-constrained models

Although over-constraint is directly caused by the addition of a single constraint to a model, several con-
straints are involved in the situation. The over-constraining set consists of the constraint that "caused" the
over-constraint and a subset of the model's constraints that conflict with that constraint, directly or indi-
rectly. Selecting one constraint from this set and removing it4 from the model reduces the over-constrained
state to a fully- or under-constrained one. We must now identify the over-constraining set; a potentially
different set exists for each over-constrained situation within the same model.

Consider the case of the twice-determined dimension d2. One determination of d 2 comes from the
inference node that points to d2 . That inference node states that if 12P, and 12P2 are both known, then
we can determine d2 and v0. If this inference were not possible, then the source of over-constraint would
disappear. We indicate this on the graph of Figure 4 by "flipping" the direction of the arc (originally from "I"
to d 2) to be from d2 to the "I" node. Continuing the reasoning, the inference would not be possible if either

12PI were unknown or 12P2 were unknown. This is indicated by flipping both arcs. Continuing backward from
12pl, this point's location would not be known if 11P2 were unknown, so removing the coincident constraint
c12 would alleviate the over-constraint.

This chain of reasoning continues back through d1 , but not through v, or l11 . The reason is due to
the fanout at those nodes, where information is used in two separate chains of constraint solution, and where
this information is recombined by an inference node later on. The concept is analogous to the notion of
reconvergent fanout in the digital test generation literature (Breuer and Friedman, 1976]. The algorithm for
finding the over-constraining set is then as follows:

1. Beginning with the node at which the over-constraint is detected (i.e., the node which has two arcs
leading to it), flip the arcs backward through the next set of nodes.

2. Continue flipping the arcs backward until a node is reached where there is reconvergent fanout (such
a node is guaranteed to exist due to the existence of node "S").

3. All constraints for which both input and output arcs are members of the set of flipped arcs are members
of the over-constraining set.

The over-constraining sets for the graph of Figure 3 are depicted in Figure 4. The set in long dashes
corresponds to the constraints that over-determine d?. The set in short dashes corresponds to the constraints
that over-determine d5 . Note that the reconvergent fanout termination criterion for arc flipping is considered
separately for each over-constraining set, i.e., two flipped arcs. one from the d, set and one from the d5 set.
do not interact and hence are not reconvergent.

Note that the over-constraint of d 5 has no dependence on d2 . although the overconstraining sets have
members in common. One might conclude that. since Is2 is a part of triangle (lsl.ls.,Isa) (call it Ti)
and that triangle T1 depends on triangle (ls 2,ls 4 .1ss)(call it T2), that the over-constraint of T2 would be
dependent on everything in T1. However, a closer examination of the particular constraints shows that,
even if d2 were not specified, the location of 12p2 would be found. Also, T2 is not dependent on 12P, at all;
rather it is dependent on the location of lip 2 . to which 12PI is made coincident.

Some of the constraints identified may remove more degrees of freedom than occur in the the over-
constrained situation; removing such a constraint would result in an under-constrained model. For example,
the over-determination of d2 indicates over-constraint of one degree of freedom. Thus. removing an angle
constraint like a13 removes the over-constraint, but removing a coincidence constraint such as ci 2 removes two
degrees of freedom, leading to under-constraint. To avoid this, our tools will suggest altering the constraint
to require a non-zero distance between IP2 and 12PI- which relaxes one degree of freedom. Such suggestions
are easy to make automatically.

From a theoretical point of view, all the constraints in an over-constraining set are candidates for
removal from a model. However, these sets may need to be filtered depending on the context. For exam-
ple, in geometric constra" -it models, constraints that reflect topological relationships (c.g., coincident-points
constraints) may have j cedence over constraints that specify dimensions.

At present. we have studied the case where the constraints can be solved by pure propagation: we have
not yet explored solutions which require the hierarchical structuring utilized by GCE's strategies of loop

40r altering its numerical parameters such that the constraint removes fewer degrees of freedom.

162

d, dl V i i I d3 i i

e ~~1 C13 ,

i:P V3 13" N
C1 C1

14PI 1PI 13P

t i23

E05

a2

163

I I I I I i I

analysis and chain analysis. Furthermore, the algorithm described above does not identify the true over-
constraining set. It omits constraints that contribute to the over-constraint but whose removal would require
loop or chain analysis to solve the constraint system. We are currently working to extend the algorithms to
handle these cases.

5.2 Plan stepper and debugger

Since a constraint solution plan is a procedural program that is generated automatically, we are exploring the
creation of tools, similar to conventional programming tools, for assisting users in understanding what the
program does and how it was generated. One such tool is a plan debugger which will provide facilities found
in debuggers for procedural programming languages: stepping forward and backward, setting breakpoints,
and examining the status of constraints and constrained entities.

A plan debugger uses the already-generated plan to allow a user to replay the plan in single-step mode
and review the choices made by the constraint solver when it was generating the plan. The constraint
solver may be able to solve more than one constraint at a time, but .arbitrarily" chooses one of the possible
constraints at each choice point. These choices reflect the fact that a plan is one possible traversal of the
dependency graph. A user may also explore alternative traversals of the dependency graph by modifying the
choices made by the constraint solver. Exploring alternative solution orders may give the user insight into
the nature of conflicting or unsatisfiable constraints. The debugger calls on the solver to add a new branch
to the plan if the user's new choice has not been explored before.

The debugger may also contain an explanation facility that reviews the solution steps and the choices
made by the system to explain to the user an interim solution state and how that state was reached.

5.3 Parameterizing under-constrained models

An under-constrained model may be parameterized by identifying a set of independent model parameters
that can be used to determine, completely and irredundantly. the behavior of the model. These parameters
represent the degrees of freedom remaining in the model after all of its constraints have been satisfied.

In the graphics and geometric mitodeling domains, GCE adds "defaulting" constraints to a model when-
ever it runs out of constraints to solve and there are still some remaining degrees of freedom in the model
[Kramer. 1992b]. Each defaulting constraint consumes one degree of freedom of a geometric entity. Default-
ing constraints allow GCE to generate a solution to the now fully constrained model and tell the user the
number of remaining degrees of freedom that may be consumed by additional constraints. These constraints
are captured in the solution plan.

5.4 Improving computational efficiency

The dependency graph of a constraint model specifies a partial order for satisfying the constraints in the
model. This partial order can be used to parallelize the solution of the constraint model. Subgraphs in a
dependency graph, which correspond to subplans in the solution, can be traversed in parallel and provide
coarse grain parallelism.' As in dataflow models of parallelism, fine grain parallelism can be identified
because the solution of a constraint may proceed as soon as its predecessors in the dependency graph have
been satisfied.

The dependency graph may also be used to minimize regeneration of a solution plan when a constraint
is added or removed from a model. Graph traversal algorithms can identify portions of the dependency
graph that are not affected by the addition or removal of a constraint from a model. The new solution plan
reuses the unaffected portion of the previous solution plan (i.e., the unaffected constraints are satisfied) and
proceeds to solve the remaining constraints.

5 Subgraphs result from the hierarchical strategies of chain analysis and loop analysis used in GCE. These are not discussed
in this paper due to space limitations.

164

6 Conclusion

Constraint dependency information can be exploited in a number of areas: debugging and explanation of
constraints, consistency analysis, parameterization of models, and computational optimization. As such, the
explicit representation of this information in a dependency graph is valuable. The results obtained so far
look promising and warrant further study.

References

[AIJ, 1992] Artificial Intelligence (Special Volume: Constraint-Based Reasoning), volume 58, December
1992.

[Belleville, 1992] Laureen Belleville. Applicon's intelligent approach to modeling. Computer Graphics World,
page 17, November 1992.

[Borning, 1979] Alan H. Borning. ThingLab: A Constraint-Oriented Simulation Laboratory. PhD thesis,
Stanford University, July 1979.

[Breuer and Friedman, 1976] Melvin A. Breuer and Arthur D. Friedman. Diagnosis and Reliable Design of
Digital Systems. Computer Science Press, Rockville, MD, 1976.

[Kramer, 1990] Glenn Kramer. Solving geometric constraint systems. In Proceedings of the 8th National
Conference on Artificial Intelligence, pages 708-714, Boston, MA, August 1990. American Association for
Artificial Intelligence, MIT Press.

[Kramer, 1992a] Glenn Kramer. Solving Geometric Constraint Systems: A Case Study in Kinematics. MIT
Press, Cambridge, MA. 1992.

[Kramer. 1992b] Glenn A. Kramer. A geometric constraint engine. Artificial Intelligence. 58:327-360, De-
cember 1992.

[Mills. 1992] Robert Mills. Terms of endearment. Computer-Aided Engineering, pages 48. 50. 54. October
1992.

[Pabon et al.. 1992] Jahir Pabon. Robert Young, and Walid Keirouz. Integrating parametric geometry,
features, and -ariational modeling for conceptual design. Systems Automation: Research and Applications,
2:17-36. 1992.

[Sutherland. 1963] Ivan E. Sutherland. Sketchphd: A Alan-Machine Graphical Communication System. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1963.

[Tee, 1992] Cynthia Tee. Human factors in geometric feature visualization. Master's thesis, Massachusetts
Institute of Technology, Cambridge, MA, June 1992.

165

Implementing Computational Systems with
Constraints

Claude Kirchner Helene Kirchner Marian Vittek

INRIA-Lorraine & CRIN
615, rue du Jardin Botanique, BP 101

54602 Villers-les- Nancy Cedex FRANCE
E-mail: kirchner@loria.fr, vittek(aloria.fr

Abstract
The paper presents a framework to describe, experiment and study the combination of different

computational systems including the constraint solving paradigm. Computational systems are interpreted
in a first-order setting thanks to an evaluator that rewrites formulas.

1 Introduction
Logic programming in a broad sense, theorem proving and constraint solving have in common their foundation
on a computational system, described by the syntax of fr'rmulas, a set of axioms, a set of deduction rules
whose application is governed by some strategies, altogether with one or a class of interpretations. All
these activities may be formalated as instances of a common schema that consists of applying deduction
rules on formulas with some strategy, until getting specific forms. In logic programming the emphasis is on
efficiency in reaching a successful solved form characterising an answer, in theorem proving on completeness
in detecting trivially false or true formulas, and in constraint solving on getting some predefined solved form
of a constraint.

We claim that this similarity is 7 major advantage for the design of safe programming environments
where programs in high-level progr z languages can be developed and some of their properties can be
proved. Moreover we believe that .plementation of such an environment can rely on a very simple
theoretical setting: first-order equatio•,ai iogic. This means that we see formulas, sets of formulas and proofs
as first-order terms. We see a deduction rule as a rewrite rule or a transition rule, that is a rewrite rule
applying at the outermost position of such terms. Application of deduction rules is rewriting, possibly under
some conditions. We think that this framework has several advantages:
- it is conceptually simple.
- we benefit from the work on rewriting and efficient implementation techniques.
- we can define rewriting in the language itself, so bootstrap the system.
- more important, we can reason about computational systems, for instance prove abstract properties of
the deduction rules like termination or confluence with rewrite-based techniques. We can also reason about
combination and enrichment of computational systems and build new paradigms in a modular way, once we
know how systems theoretically interact.

To validate these ideas, we develop a prototype1 called ELAN, to describe, experiment and study the
combination of different computational systems that provide basis for logic programming paradigms. Our fa-
vorite starting example, developed in this paper, is the combination of constraint solving with computational
systems based on rewriting and narrowing.

'This prototype has been partly designed in collaboration with the DEMONS group in Orsay and supported by GRECO
PAQIA of CNRS, and Esprit BRA CCL.

166

2 Conceptual setting

"The conceptual setting is given by the notion of computational system whose evaluation mechanism is based
on application of transition and rewrite rules. This provides uniformity of the execution principle which is
first-order. The notations and definitions used in this paper are consistent with [DJ90, JK9l].

In our approach, a computational system is given by a syntactic part and a computational part.

"* The syntax is defined by
- a class Sign of signatures; each signature E E Sign defines a set of sort symbols, a set of function
symbols and a set of predicate symbols.
For each signature E E Sign,
- stat(E) denotes the sets of statements that are sentences (well-formed formulas) built on this
signature.
Each pair P = (E, r) where E E Sign and r E stat(E2) defines an axiomatic theory.
- quer(E) denotes the queries that are sentences built on the signature E.

" The computational part is defined by deduction rules and their strategy of application. These deduction
rules are aimed to transform queries into "simpler" queries in the sense that they can easily be solved
in the axiomatic theory P = (E, r). Indeed it is assumed that the deduction rules and their application
strategy have been proved correct and complete w.r.t. an adequate semantics. We do not focuss here
on this theoretical point but only consider examples where such correctness and completeness results
are available.

A computation is a sequence of terms to .11 _ t,. where each tt+1 results from the
application of the transition rule ri on ti. A sequence of names of transition rules is a strategy. More
precisely, a strategy is a set of such sequences described by a regular expression built on the names
of deduction rules using concatenation, iteration and selecting operators. This regular expression
(strategy) describes the set of all admissible computations. A computation t o :=r, t1 ... I tn
is admissible w.r.t. the strategy s iff the word "r0 ... r,,-." is in the language SLan(s) described by
the regular expression s. 1, is called the result of this computation w.r.t. s. From this definition we
see that more than one computation starting from the initial term to can belong to SLan(s); in this
case the strategy of computation s is nondeterministic and its result is the multiset of results for all
admissible computations. On the other hand, when there is no admissible computation starting from
to., the result of the strategy s is an empty multiset.

For example, a Horn clause computational system is defined by chosing Sign as the class of first-
order signatures, stat as sets of formulas of the form (VX : A B1 , B,,). quer as formulas of the form
(3X : G1, -- , G.) where X is a set of variables, A, Bi, Gk are atoms. SLD resolution can be described using
deduction rules that produce, from the negation of the query, the empty clause which is trivially unsatisfiable.
A correct and complete strategy must include all computations leading to the empty clause.

Another example is an equational computational system defined by choosing Sign as the class of
first-order signatures with "=" and "-," being the only predicate symbols, stat as all sets R of universally
quantified formulas of the form (VX : I - r), such that R is a convergent term rewriting system, quer as
formulas of the form (3X : g = d 11 S), in which S is a possibly empty conjunction of equations denoted

A(t =# t'), which are solved with syntactic unification (also called unification in the empty theory). The
basic narrowing process [JK9l] can be used to solve such queries, provided that R is a convergent term
rewriting system. Let us briefly explain this process. Starting from a query of the form (30 : g = d 11 T),
where T denotes the empty conjunction of equations, the basic narrowing process tries to unify a subterm of
g at position w with a left-hand side of a rewrite rule (I -- r) E R, taking care that its variables are disjoint
from those of g. This gives rise to a unification problem (gl,j =0 1) and a new equation (g[r]w, = d). So the
query (3X : g = d I1 S) is transformed into another one (3X U Var(l ---* r), g[r],, = d Ij S A (gt, =0 1)) such
that the two systems of equations (3X : g = d A S) and (3X U Var(l -- r), gir],, = d A S A (glb =1 1))
have the same set of solutions in the theory defined by R. Indeed a query (3X : g = d 11 S) has an obvious
solution when g and d are syntactically unifiable and this is exactly the solution of the system .5' A (g =9 d).
Note that a successful computation transforms a problem in the theory R into a unification problem in the
empty theory. Indeed there is a lot of undeterminism in the choices of the rewrite rule (1 - r) and the

167

position w. All possible choices have to be explored when completeness of the returned set of solutions is
required (see [NR.S89]).

Accordingly, basic narrowing is described with two deduction rules:

Narrow
(3X,g = d 11 S)

(3X U Var(1 -. r), g[r]- = d 11 S A =(1)
if 1 - r E Variants(R) and S A (91, =# 1) satisfiable

Block
(3X, g =d 1 S)

(3X, T Sl S A (g =# d))
if (S A g =0 d) satisfiable

In this example, S is a conjunction of equational constraints solved in the empty theory. In general, S
could be solved in any equational theory, for instance with associativity and comutativity axioms, or even in
a specific algebra, for instance a boolean algebra. The previous deduction rules are actually parameterized
by the constraint solving process. The next step is to describe it also as a computational system.

3 Constraint solvers as specific computational systems

The description of constraint solving using rule-based algorithms as in [Com9l, JK91], allows easier cor-
rectness and completeness proofs of constraint solvers, partly thanks to the explicit distinction made in this
approach between deduction rules and control. This is also the starting point for incorporating constraint
solving in our framework. A constraint solver for symbolic constraints such as equations, inequations or
disequations on terms is also viewed as a computational system aimed at computing solved forms for the
class of considered formulas called constraints.

For instance, unification in commutative theories is a constraint solving process that can be described
as the computational system where Sign is the set of first-order signatures with equality in equivalence
classes, denoted =c, as the only predicate (C stands for commutative), stal is empty. qurr is the set of for-
mulas of the form (tI =c 12). Deduction rules have been proposed and proved correct and complete w.r.t. the
computation of a complete set of C-unifiers (see [JK91] for instance). These rules transform conjunctions of
equations of the form (P A s =c t) and include for instance the following ones for a commutative operator +:

ComiDecompose
P A s1 + s2 =C tl + t2

P A s1 =C t A S2=Ct2

ComMutate
P A s1 + 82 =C l + 12

P A s1 =C 12 A S2 =C il

In general, a language of constraints is defined by a class of signatures defining the syntax of the
constraints, the set of queries which are the constraints to solve in this language and a constraint solver. We
are interested here in constraint solving processes that can be described with transition rules that compute
solved forms of constraints. This includes for now constraint languages built from elementary constraints
that may be equations (as above), disequations [Com9l], inequations [Com90] on terms expressed with
simplification orderings, membership constraints [CD91].

This view has several advantages over constraint solving systems where solvers are encapsulated in black
boxes.

168

1. Although completeness may be in some cases, like syntactic unification, proved for any strategy, the solved
forms are in general reached more efficiently with smart choices of rules. Through the design of rules and
strategies, the developer has a direct access to the constraint solver and this point is crucial for discovering
and experimenting new solvers.
2. To be able to formalize constraint solving by rewrite rules also makes termination proofs easier and
eventually partly automated. This also opens the door to non-trivial applications of termination proof
techniques.
3. Another interest of this point of view is the conceptually easy combination of constraint solving with
other computational systems. Indeed a computational system for a language involving now formulas with
constraints (9 1I c), where 9 is a formula (a Horn clause for instance) and c is a constraint, is incrementally
built by importing a computational system for the constrairt language in which c is expressed. Statements
are sets of formulas with constraints, like in CLP(X) (JL87J. It is yet possible to define transition rules on
formulas with constraints, but we shall see later on in Section 5, that such a combination may also generate
delicate problems.

4 The ELAN interpreter

ELAN is an environment for designing computational systems, and evaluating queries written in this system.
An executable entity for the ELAN interpreter is given by:

A computational system description that provides the syntax, the deduction rules and the strategy of
the computational system which is defined.

Specifications that are axiomatic theories written in the syntax of the defined computational system and
defining their own signature and set of axioms.

Queries that express the problem to solve in a given specification and can be seen as input values for the
computation.

A specification interpreted in a given computational system produces an executable program, which is able
to evaluate a query w.r.t. the given computational system.

To achieve our goal of a uniform yet flexible system, the most delicate points were:

"* to express the syntax of any computational system that the user wants to define. In this place, ELAN
provides a parser for any context-free grammar. This gives the ability to express grammars in a natural
way, and in particular to describe mixfix syntax.

" to allow a high degree of modularity. Computational system descriptions for the ELAN interpreter are
built from elementary pieces that are modules. A module can import other modules and corresponds
to a computational system. It defines its own signature, that is the symbols used to express the syntax
of statements and queries, but also function symbols used to express transition rules. It defines its own
transition rules and rewrite rules useful to express functions used by transition rules. It defines also
strategies for applying these transition rules, that may be deterministic or non-deterministic.

" to express the evaluation mechanism of programs for given inputs, i.e. the mechanism for solving the
queries. To evaluate a query, the ELAN interpreter repeatedly applies the transition rules according
to the strategy, until the strategy is exhausted. A transition rule is implemented as a rewrite rule that
can be applied only at the outermost position of a term and whose application is conditionned by a
kind of local assignment. Since our choice is to describe computations by transition rules controlled
by strategies, a convenient and powerful language to express strategies is needed. ELAN provides
in particular don't-know and don't-care non-determinism, so the possibility to express backward and
forward chaining for the deductions.

In the following part of this section, we illustrate the capabilities of ELAN on an example. Let us consider
again the case of an equational computational system with narrowing as deduction process. Programs in
this simple language are algebraic specifications consisting in the definition of . signature and axioms given
as rewrite rules. In Figure 1, a specification of lists is given.

169

specification rwspec
s igature

Vars: X, Y, Z
Ops: nil, cons:2, append:2, a, b, c

rwrules
appand(cons(Y,Z),X) -> cons(Y,append(Z,X)),
append(nil,l) -> X

end of specification

Figure 1:

A query is then a single equation between two terms built on this signature.
A computational system description has to define the syntax of the specification and of the query as

well as how the query is solved. In a computational system description, all the notions of terms, equations,
systems of equations have to be specified explicitly. Thanks to modularity, it is indeed possible to reuse a
library of modules with mostly used constructions.

Figure 2:

For instance, defining the signature part of a specification needs to define what are functional symbols,
variables. arities, as well as the syntactic form of a function declaration in the specification. This is done in
a module prefiz..sig. Similarly, defining the rewrite rules part of a specification needs to define a notion of
term (here in the module prefiz.Aenn) and the notion of rewrite rule (in the module rurules). The module
prefizjterm is reused by the module basic-narrowig where a query and its execution are defined. Figure 2

shows all modules used in the narrowing example with their import relations.
We do not explain here the construction of the concrete syntax of a specification and how it is processed

by the system (this is described in [Vit93]), but rather focus on the processing of queries.

4.1 Transition Rules

As already said, the main ELAN mechanism to process a query is application of transition rules. The syntax
for transition rules in ELAN is:

<trans rule> ::: transition rule <nane of rule> for <type of terms>
declare <local variable declarations>
body

<rule body>

end of rule

170

pex i reuse by th moul bai-arwn whr a qur an it ecuio ar eie.Fgri

where

<rule body> ::a <term> => <term>
I <rule body> where <variable> : <strategy>) <term>

The where construction is a local assignment which assigns to the variable <variable> the result of
applying the strategy <strategy> to the term <term>. If the strategy is nondeterministic, then all results
are considered. More precisely, let r be a rule body, x a local variable, s a strategy and t a term. Then the
rule

r where z:= (s) I

conceptually represents the set of rules, all with the same name, that are instances of r of the form (z -- t')r
for any term t' resulting from the computation of t with respect to s.

A first example of transition rules, without the where construction, is given by the implementation of
the rules ComDecompose and ComMutate, for which the translation in ELAN is straightforward:

transition rule ConDecompose for system
declare P : system;

si,s_2,t_l,t_2 : term;
body

P k s-l+s_2 = t-l+t_2 => P & s-1 = t-_1 & s-2 = t-2
end of rule

transition rule ComMutate for system
declare P : system;

s_l,s_2,t_l,t_2 : term;
body

P & s-1+s_2 = t-l+t_2 :> P & s-1 = t-_2 & s-2 = t-1
end of rule

In general, functions in ELAN can be written in mixfix notation; in the last rule we have used the
operators "k + =" in infix form.

The rule Narrow from the narrowing process provides a more complex example. that illustrates several
features of ELAN. It will be written as:

IN rwrules: FOR EACH LR:term SUCH THAT rvrule(L,R) : {
transition rule Narrow for b-narr-state
declare cc,cl system;

g,d,l,r term;
sigma substitution;
oc occurrence;

body
(g = d 11 cc) => (girJ at oc d 11 cl)

where cl (unifys) g at oc = 1 & cc
where oc (occ) non-var-occ(g)
where 1 () sigma(L)
where r :: C) sigma(R)
where sigma :) rename-subst(L, g = d & cc)

end of rule

The mixfix operators used in this rule have the following meanings: applying a substitution sigma on a term
t is written "sigma(t)"; the subterm of t at position oc is written "t at oc"; the term produced by replacing
a subterm of I at position oc by the term r is written "t[r] at oc". All these functions are imported from
other modules.

The quantification IN rwrules: FOR EACH L,R:term SUCH THAT rwrule(L,R): { <rule> } means
that <rule> will be generated for all instances L,R such that L->R is a rewrite rule defined in the specification.

171

All these rules have the name Narrow. For instance two such rules will be generated in the list specification
given in Figure 1.

During the application of this transition rule, the variables are successively assigned to the following
values: sigma to a renaming substitution which introduces fresh variables not occurring in the current system:
I and r to left and right-hand side of the rewrite rule L->R after variable renaming: oc is any non-variable
position in the term g (occ is a implemented by a non-deterministic strategy); c] is a solved form of the
unification problem gloe = I & cc. The strategy unifys returns a solved form just in the case where the
original system is satisfiable. It may be worth emphasizing that the transition rule only applies when every
local variable has got a result different from the empty set. Else application of the transition rule fails.

For the sake of completeness, we can write in the same way the rule Block.

transition rule Block for b-narr-state
declare SF,cc: system;

g,d: term;
body

(g=d 11 cc) => (top 11 SF)
where SF := (unitys) g=d & cc

end of rule

4.2 Strategies

Coming back to the narrowing example, we can observe that after n applications (n > 0) of the rule Narrow
followed by one application of rule Block, the resulting term is of the form (T 11 S) where 5 provides a
solution for the starting equational query. On the other hand, the completeness result for narrowing states
that a complete set, of R-unifiers is obtained by gathering all solutions that can be computed as a result of
n applications of rule Narrow for some n > 0, followed by an application of Block. Accordingly, the set
of successful computations, that is computations leadiig to a solution, is described by the following regular
expression:

(Narrow)' • Block

where the • is the concatenation operator, and ()- is an iteration operator. So we consider this expression
as describing a correct and complete strategy for narrowing.

A partial concrete syntax for strategies in ELAN is:

<strategy> iterate <strategy> enditerate
I dont know choose(<list of <strategy>>)
I dont know choose(<list of <rule name>>)
I <strategy> <strategy>

In this syntax, concatenation is omitted, the constructor iterate corresponds to the iterator ()" and the
dont know choose constructor corresponds to a selecting operator. Note that names of rules are always
encapsulated in the selecting operator. This is because the rule name represents in general a set of rules,
so a selecting operator has always to be specified. The full ELAN strategy language is of course richer and
includes constructions for dont-care strategies, which is interesting especially from the efficiency point of
view and to formalize forward chaining computations.

Since narrowing can be described by a regular expression (Narrow)* • Block, the strategy for our
example can be implemented as follows in ELAN:

strategy b-narrow
iterate
dont know choose(Earrow)

enditerate
dent know choose(Block)

end of strategy

This strategy will generate application of the transition rule Block, then of Narrow followed by Block, then
of twice Narrow followed by Block and so on. This leads to a correct implemenitation of narrowing in ELAN.

172

Regular expressions can seem to be very weak to express computational strategies, but their power
is largely increased by using the where construction inside the rules and by the definition of admissible
computations given in Section 2. According to this definition, the dont know choose constructor has to try
all possible applications of a transition rule in the list given as argument. In our example. this is the way
to exhaustively attempt to apply narrowing with all rewrite rules in R and all positions in the query term.
The iterate constructor then successively tries all possible numbers of iterations. In the ELAN interpreter,
backtracking is used to implement a computation following this kind of strategy.

Beyond the case of narrowing, we succeeded for instance to specify commutative unification, rewriting,
and a simple PROLOG interpreter.

4.3 Flexibility

ELAN supports computational system descriptions with high level of modularity. Modules are non-parametric
and their visibility graph is a directed acyclic graph. Each module can use signatures from modules explicitely
introduced in an import part. Aliasing of operators is permitted, so an operator can have more than one
name; for example it can be used in mixfix and prefix notation at the same time. Direct importation with
aliasing allows providing all operations usual in such modular systems, like renaming, masking and so on.

The flexibility of ELAN can be briefly illustrated on (:vo examples.
- We can straightforwardly replace the syntactic unification in narrowing procedure by unification in another
theory. We just need to replace the module systemnunify by a module providing unification in the desired
theory. This can be compared to the ('LP(X) framework that could be implemented in ELAN. Each instance
would be provided by the choice of a computational system for constraint solving in the computation domain.
- We can also easily change the syntactic form of specification. For example. replacing the module prefjz.sig
by a module mirzfiz-sag. adding a module minzfix..erim and some minor modifications of basicrnarrowing,
provides mixfix notation at the specification level.

5 Combining computational systems

Up to now we have expressed in a uniform framework constraint solving and deduction and achieved
a high level of modularity. Our objective of designing and experimenting with new computational systems
leads us to consider different combination problems. Let us mention two kinds of theoretical problems that
arise in this context:

* Putting together a computational system for equality and constraint solving like unification leads to
interesting but non-trivial problems from the point of view of their properties [KKR90]. For instance
from two oriented equality with constraints, a new equality can be deduced using the deduction rule

Deduce
(g - d c'), (I - r I c)

(g[r]m d c A c' A (gm =e))
if c A r' A (gl, =# 1) satisfiable

Unfortunately this deduction rule does not capture all possible equational deductions. Consider for
instance the set of function symbols Y = {a, c, f, g}, and two rewrite rules with equational constraints:

g(a) - c
fx)-a II x=og(y)

Deduce does not apply although
a - f(g(a)) - f(c)

is a correct deduction performed with the given rewrite rules. This problem is solved in a general way
in [KKR90] by restructuring rules and constraints. Such restructuration has been shown useless with
additional syntactic restrictions on formulas. For instance it has been proved that Deduce is complete
with a limited class of initial constraints [BGLS92, NR92].

I1_

* Putting together two constraint solvers in two different first-order structures like for instance booleans
and a quotient term algebra cannot be reduced to a blind use of both constraint solvers. Typically
interactions between theories may appear and must be solved [BS92, KR92].

Such problems are yet an active field of research.

6 Further perspectives and conclusion

As already emphasized, we expect the system to provide a uniform framework for describing computational
systems, experimenting new combinations and performing proofs of their properties. Completion-based ap-
proaches implemented in theorem provers like RRL or OTTER, to prove properties such as confluence or
consistency of enrichments, can also be designed in the conceptual setting of transition rules and strate-
gies [Bac91]. Concepts like critical pairs criteria, that appear very useful in the design of efficient provers
can be formalised with constraints (KKR90. This view is not to obtain efficient theorem provers at once,
but rather to allow for experiments and designs of better proof strategies.

A complementary direction is worth considering to get high efficiency: this is the parallelisation of
deduction obtained tor free through parallelisation of rewriting (see [KV92, Mes92]). This argument that
needs further investigations is an additional point in favor of the choice of the evaluation mechanism of
ELAN.

Indeed some aspects of this work can be compared with other logical frameworks like ELF, proof
development systems like NuPRL and interactive theorem provers like Isabelle, Clam or 2OBJ. However we
think that, because of its emphasized ability to express. execute and combine computational systems and
the crucial role of constraint solving, ELAN provides interesting and original features.

References

[Bac91] L. Bachmair. Canonical equational proofs. Computer Science Logic. Progress in Theoretical
Computer Science. Birkhiiuser Verlag AG, 1991.

[BGLS92] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposition.
In Proceedings 1!1•z International Conference on Automated Deduction, Saratoga Springs (NY.
USA). 1992.

[BS92] F. Baader and K. Schulz. Unification in the union of disjoint equational theories: Combining deci-
sion procedures. In Proceedings JMth International Conference on Automated Deduction. Saratoga
Springs (NY. USA), 1992.

[Com90) H. Comon. Solving symbolic ordering constraints. International Journal of Foundations of Com-
puter Science, 1(4), 1990.

[Com9l] H. Comon. Disunification: a survey. L -L. Lassez and G. Plotkin, editors, Computational Logic.
Essays in honor of Alan Robinson, chapter 9. MIT Press, Cambridge (MA, USA), 1991.

[CD91] H. Comon and C. Delor. Equational formulas with membership constraints. Technical report,
Laboratoire de Recherche en informatique, Mar. 1991. To appear in Information and Computation.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, volume B,
chapter 6: Rewrite Systems, pages 244-320. Elsevier Science Publishers North-Holland, 1990.

[JL87] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the 14th POPL
conference, Munich (Germany), 1987.

[JK91] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: a rule-based survey
of unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic. Essays in honor of
Alan Robinson, chapter 8, pages 257-321. MIT Press, Cambridge (MA. USA), 1991.

174

[KKR9O] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. Revue
d'Intelligence Artificielle, 4(3):9-52, 1990. Special issue on Automatic Deduction.

tKR92] H. Kirchner and C. Ringeissen. A constraint solver in finite algebras and its combination with
unification algorithms. In Proc. Joint International Conference and Sympostum on Logic Pro-
gramming, 1992.

[KV92] C. Kirchner and P. Viry. Implementing parallel rewriting. In B. Fronhbfer and G. Wrightson,
editors, Parallelization in Inference Systems, volume 590 of Lecture Notes in Artificial Intelligence,
pages 123-138. Springer-Verlag, 1992.

[Mes92) J. Meseguer. Multiparadigm logic programming. In H. Kirchner and G. Levi, editors, Proceedings
3rd International Conference on Algebraic and Logic Programming, Volterra (Italy), volume 632
of Lecture Notes in Computer Science, pages 158-200. Springer-Verlag, September 1992.

[NR92) R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Briickner, edi-
tor, Proceedings of ESOP'92, volume 582 of Lecture Notes in Computer Science, pages 371-389.
Springer-Verlag, 1992.

[NRS89] W. Nutt, P. Rkty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic Computation,
7(3 & 4):295-318, 1989. Special issue on unification. Part one.

[Vit93] M. Vittek. ELAN User's manual. In preparation.

175

Aggregation in Constraint Databases
(Preliminary Report)

Gabriel M. Kuper
ECRC

Arabellastr. 17
D-8000 Miinchen 81

Germany.

Abstract

We discuss the issues that arise when we add aggregation to a
constraint database query language. One example of the use of ag-
gregation in such a context is to compute the area of a region in
a geographic database. We show how aggregation could be added to
the query language, tuple calculus, and discuss the problems that arise
from the interaction of aggregate operators and constraints.

1 Introduction

[KKR90] proposes the use of constraint query languages as a natural way
of combining relational databases with constraint formalisms (see also [Ku-
per90] [Revesz90]). One important aspect of relational databases that is not
discussed in that paper is the use of aggregation. Typical aggregate operators
in relational databases are: Sum, Average, Count. In a spatial database, the
simplest analogue is computing the area of an object. More complicated ag-
gregate operations, such as averaging an attribute over a given region, could
be useful.

In this paper, we outline a method to add aggregation to the languages

of [KKR90]. Our approach resembles the approach taken by Klug [KlugS2]
in the framework of traditional relational database systems. The current

176

paper has two main parts: We first illustrate (mostly by examples) how
Klug's approach can be generalized to the constraint framework. We then
discuss the problems that arise from the interaction between aggregation
and constraints. These problems concern mainly closure under aggregate
operations. We conclude with a description of possible directions in which
research could be pursued to deal with these problems.

2 Aggregation with Constraints: An Exam-
ple

The main idea behind Klug's approach is to enable the user to group the
tuples being aggregated in all possible ways, without introducing the need
to have relations with duplicates.

We will not give here a formal description of Klug's query languages.
However, we hope that the key ideas will be clear from the following example,
even for the reader who is not familiar with Kiug's paper.

Example 1 Let R(n,x,y) be a ternary relation containing a database of
rectangles. The semantics of this relation are as follows: Tuple (n, x, y) is
in R iff (x,y) is a point in the rectangle with name n. This is the same
example as in [KKR93]. As explained there. we represent each rectangle in
the database by constraints, rather than listing all the points explicitly.

There are various ways in which we could apply the arca function to this
relation:

1. Suppose we want to compute the area of each rectangle separately. In
other words, we want to compute a relation S(n, a), where a is the area
of the rectangle with name n. This query is written as follows:

R (1, area 2,3)

The meaning of this notation is as follows. We apply, to the relation R,
the aggregation operator that groups the tuples on their first argument,
and then applies the aggregate operator area 2,3 to the second and third
column.'

'For technical reasons we have a version of the aggregate operator for each pair of

177

2. Now suppose that we are interested in the total area covered by the
points of the database, counting points that are in several rectangles
only once. We can do this, by projecting R onto the second and third
columns, thus generating a flat representation of the data without the
rectangle names. We then apply aggregation to the result. Formally,
the query is:

(H12,3(R)) (0, areal, 2)
Note the first argument of the aggregation is 0. This means that the
result has only one column, and this column contains the result of the
aggregation.

3. Finally, suppose that we want to compute the total area. but this time
counting points that are in several rectangles multiple times. To do
this, we first compute the relation S as in the first example, and then
sum the second column of the result. We can do this using the sum
aggregate operator on traditional relational databases. We can apply
such an operator to a constraint database whenever the relevant column
contains only a finite number of elements. Formally, the query is:

(R (1, area2,))) (0, suni2)

An important aspect of this example that we would like to stress is that.
as in [KKR93], while the example we gave is of a database of rectangles. we
do not actually made use of this fact. In other words, the queries in this
example will work, without any changes, for any" database that consists of
geometric objects that have a well defined area.

3 Constraint Query Languages with Aggre-
gation

In this section we briefly describe how to generalize [Klug82] to constraint
database. Our Lbsic setting is similar to Klug's. We have a set

Agg = {ff.,fo,...}

distinct columns. The version of the area function is generated automatically by the tuple
calculus to algebra conversion algorithm. This means that the multiple versions of each
aggregate operator are in fact hidden from the user.

078

of aggregate functions. Each function is from the set of all relations to the
domain D of the constraints. For example, if we are dealing with polynomial
constraints, the range of the aggregate functions must be the reals. We have
a "uniformness" condition, as in Klug, that basically says that if we have
an aggregate function, say areal, 2 in Agg, then we have "similar" functions
areai,, for all i # j.

The first point in which our approach differs from Klug's, is that aggregate
functions can have more than one subscript. In the relational model the
aggregate functions are unary: average, sum etc. In constraint databases we
can have aggregate operators with higher arities: For example binary (e.g.,
area), ternary (e.g., volume), etc.

Another point where care is needed is the fact that most of the languages
described in [KKR90] use constraints over an unbounded domain (integers,
reals, etc.). This means that we could have objects in the database whose
are is infinite. We can avoid this problem by assuming that the database
instances are bounded. We expect that in real systems this will usually be
the case. (Note that a database instance could still represent an infinite
set of points, but in a bounded region of space). This is a point where more
research is needed, since this problem does have some resemblance to issue of
safety in relational databases, and our solution is not completely satisfactory.

For our purposes it will, however, suffice, and we can now define a tuple
calculus and algebra for constraint databases with aggregation. We omit the
formal details of the construction of the query languages and the proof of
their equivalence, since these are fairly straightforward extensions of Klug's
work. We hope that the example in the previous section gives a reasonable
idea of how the relational algebra is defined.

The most critical difference between constraint and relational databases
is a consequence of the requirement that the language be closed. The rest of
this paper will discuss the consequences of this requirement.

4 Closure under Aggregate Operations

So far, we have discussed the relational algebra and calculus on constraint
databases in terms of the underlying semantics. The problem is that the
result of a query must be representable by a finite set of constraints, and
there has to be an effective way to compute this representation. It turns out

179

that for many interesting classes of constraints this is not the case.

Example 2 Consider the language of linear inequality constraints. Let
R(x, y, z) be a ternary relation, with an instance that consists of exactly
one generalized tuple:

x -y Z<OAx >OAy O 0

Suppose that, for each z, we want to compute the area of the region

{(x,y) I R(x,y.

Formally, we want to evaluate the query

R (3, areal, 2)

The result is a binary relation S(z, t). Unfortunately, the result .5 contains all
tuples (z, t) for which z2 = 2t. Clearly, in order to represent this instance we
need quadratic constraints. i.e., the relational algebra with linear inequality
constraints is not closed under aggregation by area.

If we think about this example, this result is actually quite reasonable.
Computing the area of a region is essentially integration. Since the integral
of a linear function is a quadratic function, it is quite reasonable to expect
that quadratic functions are needed to express the result. More surprisingly
closure under aggregation by area does not hold even for dense order con-
straints.

Example 3 Let R(x, y, z) be a ternary relation, with an instance consisting
of the generalized tuple

0<x<y<z<l

Once again, we have the query

R (3, areal, 2)

whose result is binary relation S(z, 1) containing all tuple (z, t) for which
z2 = 2t. Once again, quadratic constraints are needed to express the result.

What about polynomial constraints? It turns out that even these are not
closed undei aggregation by area.

180

Example 4 Let R(x, y, z) be a ternary relation, with the instance consisting
of {X2 + y2 <

x<_z

Once again, what is the result of the query

R (3, areal, 2) ?

We get a relation S(z, t), containing all tuples (z, t) such that t is the area of
the part of the unit circle above the x-axis, and between y = 0 and y = 1 - z.
In other words, (z,t) is in the result iff

t = I' vl- x2dx
=

i.e., iff
t = z)v/:(.- z) + sin-(1 (I- z))

Clearly, this cannot be expressed using polynomial constraints

5 Discussion

We have described here the consequences of adding aggregation operators to
a constraint-based database query language. The main problem that arises
is finding a finite representation of the result. Most interesting classes of con-
straints are not closed under aggregation by area. For example, to represent
the area covered by linear constraints requires polynomial constraints, and
the area covered by polynomial constraints needs transcendental constraints.
We outline three approaches that could be pursued to handle this problem,
namely, restricting the aggregation operators allowed, restricting the query
language, and using a typed language in order to make the consequences of
the closure problem less serious.

1. Restricting the aggregation operators. It is possible that some aggrega-
tion operators, for example minimum and maximum would have finitely

181

representable results, using the same class of constraints. One inter-
esting research area is to characterize those aggregation functions with
such a property, for the various classes of constraints.

This is of course not a complete solution of the problem, since certain
operators, such as area would not be in this class, and they are very
important in some applications.

2. Restricting the query language. It is possible that for many applica-
tions, the full power of the relational query language with aggregation
is not required. For example, in a G(IS application, we might want
to compute the area of several features in a map. As this is a finite
set of values, this could be represented by a standard, finite, relation,
avoiding the closure problem.

There are, however, applications for which this solution does not suf-
fice. For example, in a database that combines spatial and temporal
components, we might want to determine how the area of some feature
varies with time. Using a finite relation to store the result loses the
advantages of the constraint-based approach. On the other hand, this
is precisely the type of query that gives rise to the closure problem.

3. Using a typed language. In this approach we do not try to avoid the
closure problem, but rather to mitigate its consequences.

Consider the area function. While, superficially, the domain and range
of this function are both the set of real numbers, if we take in to
account the dimensions of the underlying physical units, the domain
and range are in fact different.2 We can therefore have different classes
of constraints that are allowed, depending on the types of the variables.
For example, we could have linear constraints on length variables, but
polynomial constraints connecting length and area variables.

In this way, we could isolate the places where the "harder" classes of
constraints can appear, in such a way mitigating their effect on the
efficiency of the query language.

'in fact, when we said that the fact that the domain of the constraints is bounded
implies that the area is also bounded, we ignored the fact that the bounds are different.
Using a typed language would address this problem as well.

182

Acknowledgments

I would like to thank Paris Kanellakis for useful discussions, in particular for
providing some of the motivation for this paper.

References

[Dincbas88j M. Dincbas, et al. The Constraint Logic Programming Language
CHIP. Proc. Fifth Generation Computer Systems, Tokyo Japan,
1988.

[JL871 J.. Jaffar, J.L. Lassez. Constraint Logic Programming. Proc. 14th
ACM POPL. 111-119, 1987.

[KKR90] P. Kanellakis, G. Kuper and P. Revesz. Constraint Query Lan-
guages. Proc. 9th ACM PODS, pp. 299-313, 1990.

[KKR93J P. Kanellakis. G. Kuper and P. Revesz. Constraint Query Lan-
guages. JCSS, to appear.

[Klug82] A. Klug. Equivalence of Relational Algebra and Relational Calcu-
lus Query Languages Having Aggregate Functions. A CM Trans.
on Database Systems, 29 (3), pp. 699-717. 1982.

[Kuper90] G. Kuper. On the Expressive Power of the Relational Calculus
with Arithmetic Constraints. Proc. 3rd International Conference
on Database Theory, 1990.

[Revesz90] P.Z. Revesz. A Closed Form for Datalog Queries with Integer
Order. Proc. 3rd International Conference on Database Theory,
1990.

[VanHen89] P. Van Hentenryck. Constraint Satisfaction in Logic Program-
ming. MIT Press, 1989.

183

Constraint Satisfaction in Functional
Programming

Frangois Major
National Center for Biotechnology Information

National Library of Medicine
National Institutes of Health

Bethesda. MID 20894
major 6ncbi.nlm.nih.gov

Marcel Turcotte and Guy Lapalme
Ddpartement d'Informatique et de Recherche Op6rationnelle

Universit6 de Montr6al
Montr6al. Quebec. Canada

H3C V37
t urcotm iu medcn. umont real.ca

lapa line qiro.umontreal.ca

Abstract

Motivated by an application in molecular biology, the prediction of biopolymer three-
dimensional structures. an appropriate polymorphic tree search control structure has been
implemented using a functional programming language to evaluate different tree search ap-
proaches to solve discrete combinatorial problems in three-dimensional space. The control
structure is the basis of a constraint programming framework implemented in the functional
programming paradigm. The non-strict semantic (lazy evaluation) and other features of
higher-order functional programming languages have allowed to introduce constraint pro-
gramming features in the functional programming paradigm.

1 Introduction

In the last two years, we have developed a constraint programming (CP) framework using the func-
tional programming (FP) language Miranda1 [1) to solve discrete combinatorial problems using
tree search strategies. Higher-order FP allows for the expression and abstraction of algorithms and
data structures. The CP framework is based on an abstract tree search control structure which
has two functional parameters to control the domains before and during execution: a domain
generating and a domain ordering function. The task of the programmer is to express his con-
straint satisfaction problem (CSP) by defining these two functional parameters which completely
determine the behavior and efficiency of the search [2, 3].

1 Miranda is a registered trademark of Research Software Ltd.

184

The use of this CP framework was demonstrated with a fundamental application inI molecular
biology: the prediction of biopolymer three-dimensional (3-D) structures. First the CP framework
was tested on solving the 8-queen problem and a simplified version of the biopolymer 3-D structure
prediction. Then. the Miranda prototype has been used to reproduce small biopolymer motifs
(4. 5]. demonstrating the feasibility of the approach for real problems. The prototype has recently
been translated into C++ in order to solve larger problems.

2 Modeling biopolymers

A biopolymer is a sequence of molecules, called residues. linked by strong chemical bonds. Such
sequences fold in 3-D space to adopt a minimum energy state. called native structure. A consensus
has been established around the notion that the folding pathway is encoded in the sequence of
residues. The native structure is necessary for biological function. The problem of biopolymer
structure prediction has been mucli studied in the past 30 years but we still do not know how a
sequence folds in 3-D space (so,- [6] for protein and [7] for nucleic acid structures). This problem
is important because it is believed that knowledge about 3-D structure of biopolymers could
help better understand th,.ir biological role. Furthermore. current sequence databases contain
thousands of biopolymer sequences await ing for their structure to be determined.

The most accurate method for determining the 3-D structure of a biotpolymer i- X-ray crys-
tallography. a costly process that do,.s not apply to all biopolymers. X-ray crystallography has
been successful to deterinie the 3-1) strictiure of only about a hundred biopolymers. Another
method. Nuclear magnetic reasonance (nmr). which has been greatly improved over the past few
years is particularly interestfing becaus, it allows for studies of molecules in solution. Under sonie
conditions. nmr experiments could produce enough proton-proton distances (Nuclear Overhalusser
Effects (NOE) distance restraints) such that distance geometry algorithms iS] could be applied to
produce accurate 3-D model.,. However. like X-ray crystallography nmr cannot be applied to all
biopolymers. So far. nmr ha.- only been applied successfully on small biopolymers.

The determination of biopolymer structures relies on the determination of structur: ia us-
ing theoretical and experimental method.,. as well as. on computer programs that cali rorm
structural data into 3-D models. Biop~olymer structure modeling is possible with the identwiiiatiomi
of tertiary interactions occuring between pairs of residues which stabilize the native conformation.
Some of these interactions define common structural motifs. called secondary structure. Theoret-
ical methods are developed in order to infer secondary and tertiary structural information from
sequence data. At present time though the accuracy and quantity of such infered information is
not sufficient to accurately predict biopolyiner 3-D structure.

Experimental methods are still the most productive source of biopolymer structural data.
Proximity of atoms or residues under some conditions can be detected by ultraviolet irradiations.
or evaluated by their participation in chemical reactions. The translation of this type of data
into 3-D constraints is however more complicated since local modifications could alter, or even
disrupt. the native structure. Nevertheless. although less precise than NOE distances, this type
of information is extremely useful for 3-D modeling.

3 Variables, domains and constraints

Biopolymer modeling has been defined as a discrete combinatorial problem [4]. Solving this CSP
consists of finding all biopolymer structures that satisfy available structural data. In this mapping.
each residue is a variable. The values for each variable are taken into the cartesian product

185

between a set of residue conformations and a set f 3-D tran4orinations. The set of conformations
were determined by statistical analysis of all possible residue conformations. I he transformations
matrices can only be computed when all residues involve li a relation are appended to the structure.
This introduces some complexity in the writing of the barch algorithm if a language with strict
semantic is used. A complete description of the domains prior to execution is required unless
a more sophisticated mechanism is implemented. The non-strict semantic of higher-order FP
languages allows for the description of such domains without any problem. The domains are not
evaluated before all necessary residues are appended to the str.:_ture. In this way. the task of
the programmer consists of simply describing the domains. The implementation of any control
mechanism is not necessary.

Secondarv structure information determines the possible conformations and transformations
to be assigned to each residue. Tertiary information is introduced in) a constraint function called
by the domain generating function which is applied each time a new residue is appended to the
structure. The order in which the residues are appended is deiermined by the user. The control
structure performs a backtracking where the domains for each variabl, is computed dynamically.
This search procedure is sound and complete. All models produced are consistent with the inpul
data and all mod..,e described by the input data are produced. Oiie of the advantagP of (his
approach and of tile use of a general function to introduce structural data is that all types of
structural data produced from theoretical anl experimental inwihod.- can be represented. Other
approaches using penalyt functions or distance matrices are restricte(d to distance constraint'.

4 Scripts

A l)iopolynier modeling problem can be defined using a syntax especially developed for this ap-
plication. All information are introduced in a script composed of three different sections: SE-
QUENCE. CONSTI'RAINT and GLOBAL. The SEQUENCE section allows for the introduction
of the sequence and secondary structural information. For each residue, an identifier. a set of 3-D
transformations. t he, set of residues which allows for the computat ion of th, 3- D transformat ion.
and a set of residue conformations are given. The CONSTRAINT section allows for the introduc-
tion of tertiary structural information. Finally. the GLOBAL section allows for the introduction
of constraints that must be verified between every pair of residues. such as collisions..

Since there are many different scripts for the same set of data. the task of the modeler is to find
a script that will produce solutions. The production of solutions is interpreted as a proof for the
structural data or hypotheses. However. refutation of structural theorenis is more difficult since
one would have to generate all possible scripts. We are currently working on ways to automatize
the generation of scripts. The script syntax we have developed could he thought of as an assembly
language for biopolymer modeling.

5 Optimization and hypotheses

For many problems few structural data is available and too many models are produced. Never-
theless, modeling is possible by introducing hypothetical constraints infered from available ones
and making use of heuristics to distinguish between several solutions. This type of information
can be represented by an objective, or preference. function to be optimized during the search.
The evaluation of partial solutions with the preference function and the use of constraints guide
the search towards locally optimal structures that satisfy available data. Biopolymer structures
of low energy that include tertiary contacts between non adjacent residues are often preferred

186

to structures that do not create tertiary contacts. These criteria are not sufficient to define a
preference function that will localize global minima and an exhaustive search is still required to
ensure soundness and completeness.

More recently, we have augmented the tree search control structure to introduce the preference
function. In addition, partial solutions must be kept in a queue of partial solutions to be explored
such as in a branch and bound algorithm. L sing a simplified model for representing biopolymers.
we are investigating different folding theories and other modeling protocols using this extended
tree search control structure.

6 Conversion to C++

The translation of the control structure and domain generating tunction to C++ was somehow
straight forward. In C++. the tree search procedure was implemented using all iteration control
structure compared to the recursive function in the Miranda prototype. Many flag bits were
necessary to control the evaluation of different variables in order to mimic lazy evaluation. On the
same problem the C++ version is approximatively 50 times faster than the Miranda prototype on
the same computer.

7 Conclusion

A CP framework implemented in a higher-order FP language. Miranda. has been used as a proto-
type to eval-ate different search strategies for solving an important problem in molecular biology.
The use of a domain generating function has simplified tile writing of efficient programs since such
a function is compatible to a priori pruning allowing for the incorporation of problem specific
optimization.

Polymorphic types and lazy evaluation are crucial features for applications such as biopol% mer
structure prediction. Polymorphic types are necessary for tile implementation of generic control
structures. The implementation of tile control structure was also greatly simplified using currying.
Currying consists of defining functions from a partial instanciation of th parameters of another
(more general) function.

Lazy evaluation allows for tile description of domains that are only evaluated dynamically
at proper time. Lazy evaluaton allows for the d-scription of very large. even infinite, domains
efficiently since no evaluation is performed unless necessary. At some point in the execution of
the algorithm, the domain could considerably be narrowed using problem specific information.
Premature evaluation of the inital domains is inefficient.

The tree search control structure presented in this article could be introduced in the standard
environment of functional languages to introduce CP features in the FP paradigm.

References

[1] D. A. Turner. Miranda - a non strict functional language with polymorphic types. In
P. Jouannaud, editor, Conference on Functional Programming and Computer Architecture.
Lecture Notes in Computer Science #201. pages 1-16. Springer-Verlag, 1985.

[2] F. Major, G. Lapalme, and R. Cedergren. Domain generating functions for solving constraint
satisfaction problems. J. Fund. Prog.. 1(2):213-227, 1991.

187

[3] F. Major. G. Lapahle, and R. Cedergren. D~rivation d'une structure de contr6le de retour-
arri~re. In Christian Queinnec. editor. .4cts d~s journihs JLFLA92: A.anc(fs applicatir's.
volume bigre 76-77. pages 202-219. 1992.

[4] F. Major, NI. Turcotte. D. Gautheret. G. Lapalme. E. Fillion. and R. Cedergren. Tie combina-
tion of symbolic and numerical computation for three-dimensional modeling of RNA. Sciince.
253, September 1991.

[5] D. Gautheret. F. Major. and R. Cedergren. Modeling 3-d structure of RNA using discrete
nucleotide conformational sets. Journal of Molecular Biology. 1993.

[61 Thomas E. Creighton. Proteins. Structures and Mlolecular Propertuis. W. H. Freeman and
Company. 1984.

[7] \V. Saenger. Principhs of Nucleic Acid Structure. Springer-Verlag. New-York. 1984.

[8] L.M. Blumenthal. Theory and applications of distance geon(try. Chelsea. Bronx. NY. 1970.

188

2 1p: Linear Programming and Logic Programming

Ken McAloon and Carol Tretkoff

Logic Based Systems Lab
CUNY Graduate Center and Brooklyn College

2900 Bedford Avenue
Brooklyn, NY 11210

mcaloon@sci.brooklyn.cuny.edu
tretkoff@sci.brooklyn.cuny.edu

The 2lp system is a step in the "Operatica Program," a project whose grand design is to provide an elegant
and powerful programming language environment for combining Al and OR methods for decision support software
systems. The term "Operatica" was coined by I.L. Lassez to suggest an analogy with the Mathematica system which
provides a programming environment for symbolic mathematical computation. In the dialogue between Al and OR,
there are two basic themes: (1) declarative programming and the notion of logical consequence and, (2) procedural
programming and the search algorithm in its many variations. Integrating Al and OR requires an environment that
combines a modeling language with a logic based language. 21p, which stands for "linear programming and logic pro-gramming," has the simplex based search mechanism of linear programming and the backtracking mechanism of
logic programming built in. 21p is both an algebraic modeling language and a logical control language. By bringing
these techniques together in a language which has standard C style syntax and treats the mathematical module in an
object-oriented way, this technology provides very powerful and usable tools for decision support programming.

The design decisions that led to 21p were based on the followag considerations:
* For run time efficiency the system should enforce a restriction to linear constraints at compile time.
* The array rather than the linked-list is the natural data structure for mathematical modeling.
* Communication between the logic and the numerical solver should be primitive to the language.
* A small language with standard syntax and with explicit integration of procedural programming con-

structs would be accessible to decision support programmers.
* The power of constraint programming is such that a compact language is sufficient for the intended appli-

cations.

* The system should be callable as a set of library routines.
* Hooks for expandability to an or-parallel system should be built in to the system.

In this paper, after discussing the relationship of 21p to other programming paradigms and introducing some
of the features of the language, we present some examples of 21p applications and discuss future directions. Other
applications can be found in [McAloonTretkoff 2], [McAloonTretkoff 3].

1. 2 1p and other programming paradigms

21p introduces a new built-in data type continuous in order to capture the modeling methods of linear pro.
gramming. Constraints on these variables define a polyhedral set The representation of this convex body includes a
distinguished vertex, called the witness point. Other structural information and communication routines are also con-
nected with the polyhedral set. This collection forms an "object" to use object-oriented programming (OOP) termi-
nology. 21p is a "little language" that supports these constructs and has its own interpreter. On the other hand, object-

189

oriented programming as in C++ enables one to extend a language with new data types without writing an interpreter
for the expanded language. Because of the need for logic based control and because of the permissions and restric-
tions on the ways in which continuous variables can be used, the C++/OOP method can not be used for the purposes
for which 21p is designed; a little language approach proves necessary.

There has long been a debate in the Al world over the relative importance of declarative versus procedural pro-
gramming. 21p enables the programmer to make clean distinctions between the declarative and procedural aspects of
a model and facilitates combining them for effective problem solving. The CLP languages Charme and CHIP inte-
grate a declarative treatment of constraints with integrality and logical requirements in a larger programming frame-
work and are an important development. On other hand. in CLP(R), in Sicstus Prolog with constraints etc., the
programmer must provide the routines for driving continuous variables to integer values or to ranges that satisfy
given logical requirements. The same is true of 21p. In 21p, this uncommitted approach is turned into a feature and
tools are provided so that the programmer can tailor the problem solving method to the application at hand. These
tools enable the modeler to use fuzzy logic and insight provided by the geometry of the polyhedral object defined by
the constraints. This also means that the modeler can utilize powerful OR techniques that are used in MIP solvers
such as Specially Ordered Sets of various types. In a similar vein, Prolog III provides built-in facilities which control
search for an integer solution to constraints via communication with the state of the solver.

21p is different from algebraic modeling languages such as AMPL [Fourer.GayKernighan] in two important
ways. First it is a logical control language as well as a modeling language. Second, 21p supports parameter passing
and procedure based modularity. In this it differs from current modeling languages in which the program basically
consists of global variables and loops to generate constraints. On the other hand, AMPL can support network models
directly and supports a set-theoretic view of a model as well as an algebraic view. AMPL also supports symbolic rep-
resentation of indices and provides powerful and original logical/arithmetic connectives and quantifiers that operate
at the level of the description of a constraint. Another feature of AMPL is the way it can enforce integrity constraints
on the parameters of the model; the linkage between the data (concrete and large) and the model (abstract and small)
is a priority in the AMPL system. Both 21p and AMPL have a "symbolic computation" facility that recognizes that
linear combinations of linear expressions are linear; this means that the modeler can employ natural mathematical
expressions in constraints and is not forced to express constraints in some "canonical" form.

The 21p language has evolved out a series of smaller languages which were developed step by step to maintain
the best balance among the logic module of the language, the linear programming module and the intended applica-
tions. The decision to restrict the mathematical solver to linear constraints was based in part on the fact that the
atomic operations of a programming language should be efficienL This was also motivated by the fact that the range
of applications that can be handled with the combination of logic and linear constraints is remarkably rich. The theo-
retical basis for this work was developed in [Cox,McAloonTretkoff] which contains an analysis of the CLP scheme
in terms of the computational complexity of the "halting problem" of languages which are instances of the scheme.
The analysis also calibrates the role of the underlying logic used - propositional, relational, functional. Let D denote
the ordered additive group of the real numbers as a Z-module. Then in the terminology of that paper, implementa-
tions of minimal-CLP(D) and conservative-CLP(D) were done before the current version of the language was
designed and implemented. The minimal and conservative languages are based on propositional and relational logic
respectively. The logic of full 21p has a more complex character. All along an important consideration was the chal-
lenge of compiling this new kind of programming language building on the work of [Warren], [JaffarMichaylov] and
others.

As a language for Al applications 21p is dramatically different from LISP and Prolog. For classical Al applica-
tions, LISP and Prolog have certain definite strengths. Both support symbolic data and very flexible handling of
types. Each is built on one mighty algorithm - lambda conversion in the case of LISP and unification in the case of
Prolog - which brings a uniformity and declarative quality to programming [Lassez]. Both make programming with
recursion very natural and recursion is the control mechanism of choice when working with data and data structures
whose semantics are free in the mathematical sense. This is in contrast to classical imperative languages which are
oriented toward numerical processing with its well-understood underlying mathematical semantics. Moreover, the
remarkable transparent memory management of LISP and Prolog, made possible by the role of the linked-list as the
basic data structure, makes writing code for various search strategies very elegant in these languages: the stacks and

190

queues are managed by the system and garbage is collected in the background. To this Prolog adds its built-in logical
control and more declarative programming facility. The weak point, if you will, of these languages historically has
been their handling of numerical computation. The development of the CLP languages was motivated to a large
extent by the aim of integrating numerical computation naturally into the declarative framework of logic program-
ming. These systems have been very successful.

Traditionally, the language of choice for heavily numerical computing is FORTRAN. Though built on a static
picture of memory management based on the array, FORTRAN has been in fact used for many interesting systems
which link AI and mathematics. The language C occupies a middle position and supports arrays and pointers which
allow for an elegant treatment of linked-lists which captures much of the modeling power of LISP and Prolog. 21p
itself does not support pointers, and if queues, stacks or linked-lists are used in a 21p program, they are coded in the
FORTRAN style. However, such data management, especially if it is a computationally significant part of the appli-
cation, is best done in C itself and handled by means of calls from 21p to external C functions. The fact that 21p fol-
lows the C picture of memory allocation, parameter passing and overall arithmetic syntax makes this integration of C
functions very natural.

2. The 21p language

The basic data types of 2lp are int, double and continuous, which is a new type for working with con-
straints. The data structures are arrays of elements of a given basic type. Arrays are the natural data structure for
mathematical programming and facilitate working with constraints. In a 21p program, variables of type continu-
ous function in the declarative manner of the variables of linear algebra or linear programming. As a program
progresses, linear constraints on the continuous variables are generated and define an evolving polyhedron in n-
dimensional space, where n is the number of continuous variables declared in the program.

While the fundamental operation on variables of type int and double is assignment the continuous vari-
ables in a 21p program are constrained by linear equalities and inequalities. Thus 21p extends to this new type the
arithmetic operators +,- and * (for coefficients) and the relational operators =,<= and >=. The = operator is used for
assignment as in C. The operators ! =,< and > are also extended to continuous variables and are interpreted by means
of negation-as-failure. By default continuous variables are constrained to be non-negative - unless a negative
lower bound is explicitly imposed. A program consists of declarations of global storage including external storage
and external functions, a main procedure called 2 1p main () and other procedures. All storage locations created in
the program are either global variables, external global variables or are declared in 21p main 0; the exception is
that loop control variables are introduced locally. Procedures take parameters by value or by reference following C
and C++ conventions. Loop variables can only be passed by value; continuous variables can only be passed by
reference. Variables which are passed by value to a procedure can not be assigned in that procedure. As in logic pro-
gramming, procedures may contain disjunctive control constructs which generate "choice points" in the computation.
These are nodes in the logic programming search to which the program can return later in its run. The system uses
depth-first search and chronological backtracking. Upon "failure" the backtracking mechanism resets the constraints
and the continuous variables to their state at the previous choice point; loop variables and variables passed by value
are also reset to their values at the choice point. The state of the global variables of type int and double and of the
variables of these types passed by reference is left unchanged by backtracking. In classical logic programming, the
"logical variable" is not assigned values but is monotonically constrained by unification. Thus the continuous
variables, the loop variables and the variables passed by value capture the role of the "logical variable" and provide
the system its declarative kernel.

As a programming language, 21p is small; its ambitions are circumscribed and focused. It is designed to be
embedded in the larger programming scheme of things and to be used as a set of library routines. Arrays of doubles
and ints and C-functions can be provided by the principal system and addressed as extern by the 21p model. The
language is built on an abstract machine model called the S-CLAM which is an analog of the WAM and CLAM in
the smaller 21p context [McAboon,Tretkoff 11. For the record, the S-CLAM supports tail recursion and classical logic
programming formats such as multiple procedure definitions and cut. The 21p architecture provides for a very modu-

191

lar linkage between the logical control and the mathematical constraint solver. As a result, 21p supports use of optimi-
zation libraries such as Cplex and OSL as well as its own simplex based mathematical code. This means that 21p can
be used for applications that require state-of-the-art optimization software and the system can move with changes in
the mathematical programming world. (It is also to be hoped that by interacting with systems like 21p, optimization
software will become more responsive than at present to requirements like incremental loading and deleting of con-
straints.)

21p provides language tools for programming the desired semantics for an optimization application. For a classi-
cal linear program the semantics of optimization are straightforward. When a richer mix of programming constructs
and logic is introduced, there are many possible interpretations to "max: ... subject-to" In particular, the program-
mer will want to control the state of the geometric object defined by the constraints both during and upon exiting this
block of code. For that reason, 21p supports control mechanisms and some built in optimization constructs for writing
code that expresses the semantics intended by the modeler. This is especially helpful when optimization routines
occur as subroutines in a larger application.

The logic programming "negation-as-failure" is supported by 21p. It turns out that in programming with con-
straints, it is double-negation-as-failure that is a most powerful and useful tool. The reason for this is simple: a call to
! !add.constraints () is a test for the consistency of the constraints generated by a call to addcon-
straints () with the current geometric object; this test for consistency leaves the object unchanged. It is this type
of query that is needed for Land and Doig search, for A* search, for computing heuristics, for lookaheads etc. Again
for the record, 21p interprets the open comparison operators <,>, and ! = by means of negation-as-failure. This is a
coherent reading which preserves the closed, convex set interpretation of constraints and which gives these open
operators a natural role to be used as guards or checks.

21p can be used as a stand-alone system or as a callable library. In stand-alone mode, a 21p model is sent directly
to the compiler/interpreter. In library mode, 21p is called from C as a function; the 21p function is sent the where-
abouts of the data and C functions it is to use as well as the 21p model; the model can be sent either as a rile or as a
pre-compiled C data structure.

3. Dynamic alternation

The 21p system takes a structured approach to logical modeling. It supports and-loops, or-loops and other logi-
cal constructs. This has the advantage of making the structure of the logic of a program clear and high-level. Simply
put, it makes the alternating structure of a logic program easier to grasp. In classical logic programming languages,
logical loops must be expressed by means of recursion using both multiple procedure defmitions and cut. In 21p logi-
cal loops and logical alternation can be expressed in a structured way. By way of example the following 21p code uses
an or loop nested in an and loop to generate permutations of N symbols in lexicographical order. It is a variation of
the classical algorithm given, for example, in [Reingold et aLl. The and-or construct can often be used to enumer-
ate the possibilities for a search problem. It is the and that moves the search forward to the next level. When a failure
occurs, the or has kept track of where to start trying next. The loop control variables are handled declaratively in 21p
in that their proper values are restored upon backtracking. In the first bit of code below, failure is triggered by a fail
statement, but in the scheduling example that follows, it is when a potential schedule cannot satisfy the constraints,
that failure occurs and the next permutation is tried. This method of generating permutations is useful in 2 1p because
the lexicographic order meshes correctly with backtracking mechanism of the logic programming search.

#define N ...
int permu[N];

t pt N] IN] ;
2 1p pmain ()

and(int i=O;i<N;i++) p[O] [i -= i; //The identity percmtation

and(int i-0; •N; 1++)

192

or(int J=O; J<N-i; J++)
if J - 0; then and(int k-i+l;k<N;k++) p(i+1]Jkl - p~i][k];
permu[i] - pl] [i+J] ;
if J !- 0; then p[i+lI[i+J] - p~i][i+J-l];

and(int i=O; i<N; i++) Printf ("kd 'A,Pez~u~iD);PrintfC(\n") ;

fail; //forces backtracking to generate next permutation

The and-or construction is natural to use as a fomn of V3. In this way, in working with NP-problems, it can play the
role of the non-detenninistic guess in the Garey-Johnson model [Gareyjohnson]. In the context of Complexity The-
ory, die non-determinism is factored out as one sequence of guesses; in the context of actual programming, candidate
guesses are generated incrementally and so take an and-or or V3 structure.

In 21p procedural techniques for doing recursion and for restoring state in a search application are often used
in conjunction with the built-in logic programming machinery which restores continuous variables and loop control
variables. Let us look an example which uses the lexicographic ordering on permutations. Schedules which require
permuting a sequence of tasks in order to meet delivery, production and other kinds of constraints are called permuta-
tion schedules. The following code segment is taken from an application to a permutation scheduling problem. The
continuous variable start time [i] represents the starting time of task i. permu [k] is the task slated for the
kth position in the schedule, prod [iI is the production time required for task i and dt [i] is the time by which
task i must be finished.

#define N ... // number of tasks to schedule
extern double prod(], //prodti] is time required for task i

dt[]; // dtli] is delivery time for task i
int permu[N];
int p[N] N];
continuous start time [N];

//starttime[i] is the start time for the ith task

21p_main 0 {
//declarative knowledge
I/priority constraints such as
starttime[i] >= start timelj] + prod[j]; //task i depends on task j

//delivery constraints such as
start time[i] + prod[i] <= dt[i]; //task i must be finished by time dt[i]

//throughput constraints such as average job must be finished
//within 2/3 of the total scheduled time
(l.0/N)*sigma(int i=0;i<N;i++) (start_time[i] + prod[i]) <=

.66 * sigma(int i=O;i<N;i++) prod[i];

I/procedural part of program
and(int iO;iL<N;i++) p[0][i] = i;//initialize identity permutation
if scheduleall (0;
then and(int i=0;i<N;i++)

printf('"Schedule task %d in the %dth position\n",permu[i],i);
else printf("There is no feasible schedule\n");

193

schedule all () (
and(int iinO;i<N; £++)

or(int J-O;J<N-i;j++) (
if J - 0; then and(int k-i+l;k<N;k++) p~i+l][k] = p[i][k];
I/schedule task p[i] [i+jl
start tul[p(i]J i+J]] -

sigma(int k-O;k<i;k++) prod[perm[uk]l;
// fails if inconsistent with setup constraints

a/ and those generated thus far by this statement
pemu[i] = plil [i+J];
if J != 0; then p[i+ll]i+J] = p[][i+j-1l];

4. Factoring the logic in and out

As a programming language for classical MIP applications, the fact that 21p is a logic based language is a signif-
icant advantage. For it can handle logical decisions either by means of additional 0- 1 variables or by direct encoding
of the logic using the 21p program constructs. Thus, for instance, 2 1p can make full use of an important idea that
comes from MIP modeling, namely the use of continuous variables as fuzzy logical variables. For example, if the
program contains several "constants" such as a fixed-cost or capacity whose values are in fact functions of a single
logical decision, then these values can be parametrized as (linear) functions of a continuous variable; this variable is
then bound by 0 and I and is made equal to 0 or I depending on the logical decision made. This yields a fuzzy or con-
tinuous declarative approximation to the model sought and can be very useful both from a heuristic point of view and
a pruning point of view. However, MIP modeling is not based on a logic language and logical disjunction and other
connectives can only be expressed by the introduction of additional 0-1 variables. These variables are used to encode
switches that express the logical relationships defined by the application. On the negative side, the introduction of
these variables can greatly swell the total number of variables of the model and can add a considerable number of
constraints. (This means adding rows and columns to the matrix sent to the linear programming solver, this is exacer-
bated by the fact that a row also will add an additional column for its slack variable. This comes down to a quadratic
increase in the size of this matrix.) With the logical control that is built in to 2 1p, coding logic in terms of 0-1 vari-
ables can most often be eliminated; the result can be both elegance in modeling and speed in performance. However,
in other cases, additional variables can ser-e to "tighten" a model and to make the "linear relaxation" fit the disjunc-
tive model more closely. This closeness of fit can be most important in the phase of an optimization program where
the job remaining is to verify that the current best solution cannot be improved. 21p facilitates the development of
both loose and tight models and the transition back and forth between them. For examples, we refer the reader to
(McAloonTretkoff 31.

5. An Example: Goal Programming with Logic

The term goal programming is used to describe situations where there are several criteria that must be taken into
account to have the best solution to a problem. Goal programming is usually done only for linear programming mod-
els. In the application that follows we consider a goal programming case where logic, in the form of integrality
requirements, is needed in addition to the straight linear model.

In this application the task is to schedule toll takers. An analysis of traffic patterns has determined the number of
employees required for each hourly period during the 24 hour day. Each worker comes on for a 9 hour shift with a I
hour break in the middle. Management wants to minimize the total number of workers assigned each day. Thus the
program must determine the number of workers who should start their shifts at each hour of the day so as to minimize
the total number of workers hired. The model requires, of course, a solution which determines an integral number of
workers to start at each hour, and it is this requirement that necessitates a logical search strategy. Unavoidably, there

194

will be periods where the number of workers available exceeds the number required for that period. These people will
of course be able to lake care of other duties beside collecting tolls. It is desirable to find a schedule which distributes
these extra workers as evenly as possible during the day so that continuity can be maintained in these auxiliary jobs.

The first task of the model will be to determine the minimum number of workers required. This will be done
with a first objective function. Then, once the minimal total number of workers is found, the next task is to distribute
the workers who will not be collecting tolls as evenly as possible during the 24 hour day. For that two stratagems will
be employed in succession. First, the largest number of extra workers that can occur at any one hour will be mini-
mized and then the number of different time periods that can have extra workers will be maximized. To do all this, for
the first two phases of the program, i.e., determining the minimal number of workers needed and then minimizing the
largest number of extra workers at any hour, the built-in optimizer construct uain: ... provided () is used; with
this construct, after the optimum is determined the objective function for that optimization call is set equal to its opti-
mal value but otherwise the continuous variables of the program are only constrained by the constraints that were
active before the optimizing call was made. This construct supports a "bluff": since the number of workers is neces-
sarily an integer, to avoid alternative solutions which determine the same number of workers, each successive solu-
tion found during a search phase of the problem should be required to better the previous solution by at least 1. The
command bluff (1.0) sets this machinery in motion. (The term "cheat" is also used in this context in the literature,
and "bluff" is sometimes used to denote an initial upper bound on the objective function in a minimization problem or
lower bound in a maximization problem.) For the final task, the max: ... subject-to {) construct is used; upon
completion of this block the continuous variables are fixed to the values the witness point had when the optimal solu-
tion was found.

The only data in the model is the number d[j] of toll takers required for each hourly period.; this data is
obtained as an external array of integers. The only constraints needed are the ones that sum up the number of toll tak-
ers on duty for each hourly period J. We will let the continuous variable x [J] represent the number of workers who
come on at the jth hour. Looking ahead to hour j+8, the workers on duty will be all those who came on at some
time j+i for i-0, , 3 and i-5, , S. For each j+8 this requirement can be expressed as

sigma(int i=j;i<=j+8;i++)xfitN] - zf(J+4)%N] <= dt(j+$)*N]

where N is a defined constant equal to 24. Naturally, we have to subtract the term x [(j+4) %N] which represents the
workers on break. If wc let sur (i] be the number of surplus workers at hour i, a variable which will be used in
the second and third phases of the solution process, this can be written

sigma(int i=j;i<=j+8;i++)x[i%N] - x[(j+4)%NJ - sur[(j+8)%N] - d[(j+8)%N]

In each of the three phases of the program, in order to meet the integrality requirements on the x [i], the model
employs a "lazy" strategy which is akin to a priority argument in Recursion Theory. The linear relaxation is opti-
mized and there is a circular loop around the 24 time periods. If wp (X[i]),the x[i] -coordinate of the witness
point, is currently at an integer value, this time slot is skipped over and the loop continues until a variable is encoun-
tered such that the witness point's coordinate at that variable is not integral; then the process is begun to drive that
variable to an integral value. To describe this process, let t be equal to floor (wp (z [i])); then the search loops
through the constraints t = xi[i], t-1 =- x [].... continuing upon backtracking toward 0 -= [i]. A fact
about convexity is brought into play - if fixing x [iI at a an integer value t-k is linearly infeasible, then the search
in that direction can be cut off since no smaller value will be linearly feasible. After the search in the downward direc-
tion, the search proceeds upward from t+l. Naturally, a variable which was at an integer position might be "injured"
in the branching and optimization process required to make another variable have an integral value. Either this vari-
able will return to an integral position or it will eventually be reached in the circular loop and branched upon. Thus all
integrality "requirements" are met.

#define N 24 // hours in the day
#define M 8 I/ 8 working hours

continuous z[N]; // x(i] is number of workers starting at hour i
continuous surCN]; // sur[i] is number of surplus workers at hour i

195

continuous z,u, ex(N],tra(N]; // auxiliary variables

int a; // circular loop counter

extern double d[]; // data entered in external C code

21p main p)
I

sigma(int i-O;i<N;i++) x[i] =-= z; //z is to be minimized

setup constraints ();

schedulel 0;
schedule2 ();
schedule3 0;

printf("The total number of workers required is %d\n",nint(z));
printf("There will be surplus workers during %d hourly periods\n\n",nint(sig-
ma(int k=0;k<N;k++) tra[k]));
printf("The schedule recommended is \n\n");
and(int i - O;i<N;i++)

printf (%At hour %i \t bring on %d workers\n",i,nint(x[i]));
)

schedulel () // determine minimum number of toll takers required
min: z; provided (//only restores optimal value of objective function

bluff (1.0);
optimize 0;
a = N-I;
lazy loop 0;

)

schedule2() 0 II minimize the maximum surplus workers
and(i=O;i<N;i++) sur[i] <= u;
min: u; provided {

bluff (1.0);
optimize 0;
a = N-i;
lazy loop(} ;// find minimum hourly surplus bound

}

schedule3() C // distribute surplus workers more broadly

//cap on number of surplus workers at each hour
and(i=0;i<N;i++) sur[i] <= u;

//tra[i] is "characteristic function" for presence of surplus workers
and(i=O;i<N;i++) tra[i] <= 1;

// decompose hourly surplus
and(int k=0;k<N;k++) sur[k] =• exzk] + tralk];

// favor wide distribution of surplus workers

1%

max: sigma(int k-O;k<N;k++) tra[k]; subject to
bluff (1.0);
optimize ();
Sa -N-1;

lazy loop (;
/ I/subject to restores value at optimum of
//all continuous variables

lazy loop() (
and(int i=O; i<N; i (i+l) %N)

if lintegral(x(il); // fabs(wp(z[i]) - nint(x[i])) < EPSILON
then down and_up(i,floor(z[il),xz(i3);

else if i - s; then break; i/break exits and-loop with success
I

downandup(int i,double t,continuous x)(//i,t passed by value, z by reference
either // down

or(int k~t;k>=O;k--)
if x =- k; then (optimize(); s = i;)
else break;

or // up
or (int k--t+l; k<-M; k++)

if x =- k; then loptimize(); s - i;)
else break; //break exits or-loop with fail

set_upconstraints ()

and(int j=O; j<N; J++)
sigma(int i=j;i<=j+M;i++) x~iN] - [(j+4)%N] 1/9 hours less break

- sur[(j+M)%N] = d[(3+M)%N];

6. Future directions

An interesting topic combining logic and constraints is propositional theorem proving. Experimental work
in this field using polyhedral methods is being carried out in several research centers in the USA and abroad, e.g.
[Hooker],[Comon et al.], [Hahnle], [Bell et al.]. Our starting point is the analysis of [Blair,Jeroslowjowe] and
Jeroslow's watershed monograph [Jerosiow] where it is argued that Davis-Putnam-Loveland (DPL) techniques are
more amenable to constraint methods than resolution based techniques. The relation of propositional consequence is
co-NP complete. With resolution methods, a problem to show there is no polynomially long path of a certain type is
transformed into an existential search for a successful path of possibly exponential length. The proper analogy from
Recursion Theory is the equivalence of i- sets of integers and O -recursive sets of integers. (Note that in this
view NP is analogous to co-RE and the analytic sets of recursion theory and descriptive set theory.) The DPL
approach keeps the consequence relation in its co-NP form and makes it akin to a MIP optimization problem. We
have implemented a version of DPL in C calling 21p to handle the constraints. The first difference with symbolic DPL
methods is that the unit resolution check for consistency is done automatically by the simplex based linear program-

197

ming solver. Note that this also means that the linear programming solver provides a complete theorem prover for the
Horn clause fragment of the set of clauses. Using the 21p programming language tool we will also be able to add to
the continuous mathematical version of DPL heuristics and search techniques which exploit the geometry of the poly-
hedral set defined by the propositions interpreted as constraints. This puts at our disposal, heuristics such as the
Balas-Martin heuristic from Integer Programming, greedy and Gray code methods, the Jeroslow heuristic for DPL as
well as some new opportunistic methods for driving continuous variables to discrete values that we have developed in
our own work.

Among important non-traditional connectives are generalized disjunctions such as 5 choose 3. When
expressed in clause form these connectives are not very amenable to unit resolution and similar symbolic techniques.
However, it can be shown that in conjunction with constraint methods, these generalized disjunctions can be used to
detect early failure in the search for a satisfying assignment to a set of propositions. Let us look at a concrete exam-
pie. The generalized disjunction "At most one of p,q~r is true" transforms into three clauses, namely,
(p',q") ,(q',r' ,{p',r'I. If we add to these the clauses (p,ql ,{p',qI,{p,q'),{q,r) the resulting set is inconsistent. How-
ever, unit resolution cannot detect this inconsistency and the symbolic DPL algorithm can not detect it without resort-
ing to the splitting rule. As linear constraints, these clauses become

q + r >= 1; (1-p) + (Il-q) >= 1; (1l-q) + (Il-r) >= 1, (1l-p) + (I -r) >= 1;

p+q>= l; (l-p) + q >= l; p+ (l-q) >= 1; 0 <=pq,r <= 1;

This set of constraints is still consistent as a set of lirear constraints; in fact, by Chapter 5 of [Jeroslow], a set
of clauses with no unit clauses is always consistent from the linear point of view. But, if we also add the generalized
disjunction "At most one of p,qr is true" in the form p + q + r <= 1, the linear constraints become inconsistent.

21p has been designed with the purpose of bringing into software control and search mechanisms which in
MIP and other constraint systems arc either hidden in a black-box or simply not available. This aim is being realized
to a definite extent and promises to continue to extend its range. The next major challenge is to bring into the 21p orbit
(or that of another constraint language) the techniques of "polyhedral theory" and "branch 'n' CuL" Certainly the
work on MINTO [Savelsbergh,SigismondiNemhauser] makes one believe that this can be achieved with some suc-
cess. In our opinion this will prove important both for optimization applications and constraint-based reasoning sys-
tems and theorem-provers. The reason is that "branch 'n' cut" methods encode a kind of "lemma" in the form of
constraints which must hold at any solution below the current node in the search. Adding the constraint description of
"At most one of p,q,r is true" to the clause description in the example above is a "lemma" in a similar way. These
"lemmas" are special in that unlike an ordinary lemma, they become "resident" and stay in force for the rest of the
computation once they are added to the constraint set. In traditional automated reasoning systems, in rewrite-based
symbolic computation systems, and in ordinary human mathematical theorem proving, a search process must be
invoked to find a previously established lemma and to apply it locally. The "resident lemmas" can be applied once
and for all with no additional invocation required. As far we know, this technique has not been applied in expert sys-
tems or symbolic computation systems.

Let us make a "remark" in the mathematical sense: for simplicity, consider the situation where a model has
no solution. (This is the case of an optimization model once the best possible solution has been found and it is the sit-
uation in a DPL based propositional theorem prover if the theorem to be proved is true!) For simplicity also suppose
that a state or node in the search can only be reached one way in either depth-first or breadth-first search and finally
suppose that the total number of nodes is finite. Then (it can be seen) both depth-first and breadth-first search visit all
possible nodes. It follows from this remark that for all practical purposes in the above situation, exhaustive enumera-
tion by depth first search is the most efficient means of verifying that there is no better solution among classical meth-
ods such as A*, Land and Doig etc. This is not a particularly pleasant prospect since it is so limiting; "polyhedral
theory" and "branch 'n' cut" are the best candidates to look to at this time for some improvement. Parallel processing
is another candidate; in [Atay] arguments are given as to why a parallel search will not visit unnecessary or duplicate
nodes in this situation.

198

Another promising application of constraint programming is to respond to the challenge launched by [Dhar,-
Ranganathan] where it is argued that rule based expert systems are superior to mathematical programming methods
for attacking complex constraint problems; in brief they contend that MIP methods do not allow for local control of
decisions and do not provide a mechanism for providing good partial solutions.

7. Concluding remarks

The 21p system currently runs on UNIX workstations and 386/486 PCs. A parallel implementation which basi-
cally is an or-parallelization of the depth-first 21p stack mechanism has been done. This work is reported on in
[Atay,McAloonTretkoff].

The authors would like to acknowledge the support of NSF grant CCR-9115603.

8. Bibliography

[Atay] C. Atay, Parallelization of the Constraint Logic Programming Language 21p, Ph.D. Thesis, City University of
New York, June 1992

[Atay,McAloon,Tretkoff] C. Atay, K. McAloon and C. Tretkoff, 21p: a highly parallel constraint logic programming
language, Sixth SIAM Conference on Parallel Processing for Scientific Computing, March 1993

[Bell et al.] C. Bell, A. Nerode, R. Ng and V. S. Subrahmanian, Implementing deductive databases by linear program-
ming, University of Maryland, Computer Science Technical Report, CS-TR-2747, UMIACS-TR-91-122.

fBlairjeroslow,Lowe] C. W. Blair, R. G. Jeroslow, J. K. Lowe, Some results and experiments on programming tech-
niques for propositional logic, Computer and Operations Research 13(1986) 633-645.

[Colmerauer] A. Colmerauer, An introduction to Prolog III, CACM 33 No. 7 (1990) 69-91.

[Comon et al.] H. Comon, H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez, G. Smolka (editors): Theorem Prov-
ing and Logic Programming with Constraints, Dagstuhl-Semiuar-Report 24 (9143)

[Cox,McAloon,TretkoffJ 3. Cox, K. McAloon, C. Tretkoff, Computational complexity and constraint logic program-
ming, Annals of Mathematics and Artificial Intelligence, S(1992) 163-190.

[Dhar,Ranganathan] V. Dhar and N. Ranganathan, Integer Programming vs. Expert Systems: an experimental com-
parison, Communications of the ACM 33, No. 3 (1990) 323-337.

[Dincbas et al.] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Berthier, The Constraint Logic
Programming Language CHIP, Proceedings of the International Conference on Fifth Generation Computing Systems,
1988.

[Fourer,GayKemighan] R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Pro-
gramming, The Scientific Press, 1993

[Gareyjohnson] M. Garey and D. Johnson, Computers and Intractability, W.H. Freeman 1979

(Hahnle] R. Hahnle, A new translation for deduction into integer programming, submitted for publication.

[Hooker] J.N. Hooker, Jr., Input proofs and rank one cutting planes, ORSA Journal on Computing 1, No. 3(1989)
137-145.

199

fJaffar,Michaylov] J. Jaffar, S. Michaylov, Methodology and Implementation of a CLP System, Proceedings of the
1987 International Logic Programming Conference, edited by J.-L. Lassez, MIT Press, 1987.

[Jeroslow] R. G. Jeroslow, Logic-Based Decision Support, Mixed Integer Model Formulation, North-Holland, New
York, 1989.

[Jeroslow,Wang] R. G. Jeroslow, J. Wang, Dynamic programming, integral polyhedra and Horn clause knowledge
bases, ORSA Jonrrnal of Computing 1, No. 1(1989) 7-19.

(Lassez) J.-L. Lassez, From logic programming to lazy programming, manuscript.

[McAloon, Tretkoff II K. McAloon and C. Tretkoff, Subrecursive constraint logic programming, Proceedings of the
NACLP 1990 Workshop on Logic Programming Architectures and Implementation, edited by J. Mills.

(McAloon,Tretkoff 2) K. McAloon and C. Tretkoff, Logic and Optimization, in preparation

[McAloonTretkoff 3] K. McAloon and C. Tretkoff, Al/OR Modeling in 21p, Brooklyn College Computer Science
Technical Report 93-4.

(Reingold et aL] E. Reingold, J. Nievergeld, and N. Deo, Combinatoriki Algorithms: Theory and Practie,
Prentice-Hall, In., Englewood Cliffs, NJ, 1977

[Savelsbergh,SigismondiNemhauser] M. Savelsbergh, G. Sigismondi and G. Nemhauser, Functional description of
MINTO, a MIxed INTeger Optimizer, Georgia Institute of Technology Tech Report 30332, May 1992.

[Wan zn] DH.D. Warren, An Abstract Prolog Instruction Set, Technical Report 309, SRI International, 1983.

200

An Incremental Hierarchical Constraint Solver

Francisco Menezes Pedro Barahona Philippe Codognet
(fm~fct.unl.pt) (pb~fct.unl.pt) (codognet minos.inria.fr)

Departamento de Informitica, Universidade Nova de Lisboa INRIA-Rocquencourt
2825 Monte da Caparica, PORTUGAL BP 105, 78153 Le Chesnay, FRANCE

Abstract
This paper presents an incremental method to solve hierarchies of constraints over finite domains,

which borrows techniques developed in intelligent backtracking, and finds locally-predicate-bettwr solu-
tions. A prototype implementation of this method, IHCS, was written in C and can be integrated with
different programming environments. In particular, with Prolog producing an instance of an BCLP
language. Possible applications of IHCS are briefly illustrated with a time-tabling and a set covering
problem. Because of its portability and incremental nature, IHCS is well suited for reactive systems,
allowing the interactive introduction and removal of preferred constraints

1 Introduction

Modelling a real life problem by means of an explicit set of constraints always involve, to some extent, the
abstraction of the context in which these constraints are to be considered. Decision support systems are
usually concerned with supplying the decision maker with a set of alternative scenarios in which the most
important constraints are satisfied [1]. Because not all constraints can be met by a solution, one might simply
specify a set of mandatory constraints and select one of the possible solutions that satisfy such constraints.

Nevertheless, the choice of a good solution often depends on preferred criteria (forming the contextual
background knowledge), not explicit in this approach to problem formulation. A more powerful approach
consists of specifying all intended constraints in some hierarchy, i.e. qualifying them either as mandatory or
as mere preferences, possibly with some associated preference strenght. In [2], a general scheme is proposed
for Hierarchical Constraint Logic Programming (HCLP) languages, parameterized by V. the domain of the
constraints and by C. a comparator of possible solutions.

The Incremental Hierarchical Constraint Solver (IHCS) that we have developed is intended as the kernel
of a HCLP(TV, £CPk) instance of this scheme, where F*D stand for finite domains and £PB is the locally-
predicate-belier comparator. Operationally, our approach diverges from the one presented in [2] because it is
incremental. Instead of delaying the non-required constraints until the complete reduction of a goal, IHCS
tries, in its forward phase, to satisfy constraints as soon as they appear. In case of inconsistency, a special
backward algorithm is evoked.

This can be seen as an "optimistic" treatment of preferred constraints (i.e. we bet they will participate
in the search for a solution), as opposed to the "pessimistic" view of [2] where non-required constraints
(source of possible inconsistency) are delayed as long as possible. The advantage is to actively use these
constraints for pruning the search space. This approach nevertheless requires a specialized backward phase
where dependencies between constraints, caused by their handling of common variables, are exploited to
identify pertinent causes of failure. This is done much in the same way as in intelligent backtracking [91 [41,
although instead of finding pertinent choice points, IHCS identifies pertinent constraints to be relaxed.

Because of its portability and incremental nature, IHCS is wel) suited for reactive systems requiring
constraint facilities, allowing the interactive introduction and removal of preferred constraints to further
refine any solution found.

This paper presents a formal specification of IHCS and describes the algorithms that perform these
transitions. The paper is organized as follows. Section 2 presents the formal specification of the basic IHCS,

1
This work was developed at INRIA/Rocquencourt and at the Al Centre of UNINOVA and was funded by Diligation aux

Affaires Internationales (DAI) and Junta Nacional de Investigagio Cientifica e Tecnol6gica (JNICT).

201

as a set of transition rules over hierarchy configurations, together with supporting definitions. Section 3
describes the algorithms that perform these transitions. Some extensions to the basic IHCS are addressed in
Section 4, to deal with the search for alternative solutions, the incremental removal of constraints and to cope
with disjunctions of constraints. A set-covering application and a time-tabling application are presented in
Section 5 and the conclusions are presented in Section 6.

2 An Incremental Hierarchical Constraint Solver - IHCS

A constraint hierarchy W is a set of labelled constraints c@level relating a set of variables ranging over finite
domains. c is a constraint on some variables and level the strength of c in the hierarchy. Level 0 corresponds
to the required constraints and the other levels to the non-required (or preferred) constraints. The higher
the level, the weaker a constraint is.

A valuation to a constraint hierarchy 7/, is a mapping of the free variables in Wl to elements in their
respective domains, that satisfies all the required constraints (level 0). Given two valuations 0 and ar, 0 is
locally-predicate-better than a [2] if a) 0 and a both satisfy exactly the same number of constraints in each
level until some level k, and b) in level k + 1 0 satisfies more constraints than or.

Given a constraint hierarchy W with n variables and rn constraints, V = {vi, v2 , v,I denotes the set
of variables and C = {fC, C2, • •. , Cm } the set of constraints. In our notation, c or c, designates any constraint
from C. The index indicates the introduction order of the constraint in the hierarchy.

Definition 1 (Constraint Store) A constraint store S is a set of constraints ordered by introduction order,
i.e., if ci and cj belong to S and i < j then ci precedes cj in S. Any operation on constraint stores preserves
this ordering.

Definition 2 (Configuration) A configuration 4* of hierarchy 7W is a triple of disjoint constraint stores
(AS. * 7S 9US), such that AS U 1S U 1,8 = C. AS is the Active Store, T•S the Relaxed Store and US the
Unexplored Store.

A configuration may be seen as a state of the evaluation of a hierarchy where the active store contains
all the active constraints (i.e. those that might have reduced some domains of its variables), the relaxed
store is composed by the relaxed constraints and the unexplored store is the set of candidates "queuing" for
activation. We will denote that a store S is consistent by S /x-I, where X designates a network consistency
algorithm (e.g. X = AC for Arc-Consistency [61). Si denotes the subset of S containing only constraints of
level i. A store S' = S U {c) may be expressed by c.S if c is the element of S' with lower introduction order
or by S.c if c is the element of S' with higher introduction order.

Definition 3 (Final Configuration) A configuration (AS*TZS*US) of hierarchy W1 is a final configuration
if, given the initial domains of the variables the following conditions hold:

1. AS l/xi;

2. ASU{f} -x-L (VCE IS);

3. US =1.

Definition 4 (Locally-Predicate-Better) (AS*IZoeUS) is locally-predicate-better than (AS'*IZS'*US'),
if and only if exists some level k > 0 such that:

1. #(AS1 U US,) = #(A.s UUS;) (Vi < k);

2. #(ASk UUSk) > #(A4S'k UUS').

Definition 5 (Best Configuration) A final configuration '1 is a best configuration if there is no other final
configuration V' which is locally-predicate-better than 4$.

Definition 6 (Promising Configuration) 4O = (AS * RS o US) is a promising configuration, denoted
PC(O), if i) AS Ffx-L and ii) there is no final configuration V' which is locally-predicate-better than 0.

202

IHCS aims at computing best configurations incrementally: given an hierarchy It with a known best
configuration (AS e RS e 0), if a new constraint c is inserted into Nt, then starting from the promising
configuration (AS e RS * {e)) several transitions will be performed until a best configuration is reached
undoing and redoing as little work as possible.

The following rules define the valid transitions for configurations. If we start with a promising con-
figuration and a solution to the hierarchy exist, transitions will always stop at the base rule with a best
configuration. While the active store is consistent and the unexplored store is not empty, the forward rule
keeps activating a new constraint. If a conflict is raised (the active store becomes inconsistent) the backward
rule searches for an alternative promising configuration for the hierarchy, relaxing some constraints and
possibly reactivating other constraints previously relaxed. More formally,

Base rule
AS Vx_

(AS e R.S * 0)

Forward rule
AS Ix-L

(AS .eRS e c.US) -* (AS.c e RS e US)

Backward rule

AS Fx.L Relax C (AS U US) Activate C RS Reset C (AS\•elax) PC(4)
(AS* RS & 11S) - 0

rAS' = AS \ (Relax U Res,.
where t = (AS'* RS' * Us') RS' = (RS \ Activate) U Relax

I US' = (US \ Relax) U Reset U Activate

The main idea of the backward rule is to find constraints pertinent to the conflict that should be relaxed
(the Relax set). Since the relaxation of these constraints may also resolve previous conflicts, constraints
previously relaxed may now be re-activated (the Activate set). Constraints affected by the relaxed ones
must be reset (temporary removed from the active store) in order to re-achieve maximum consistency (the
Reset set). The configuration obtained ¢ = (AS'* RS'.US') must be a promising configuration, since if no
other conflict is found, future transitions performed by the forward rule will lead to the final configuration
(AS' U US'e *•S' * 0) which will then be a best configuration.

3 Implementation of basic IHCS

IHCS is divided in two phases: a forward phase performing forward transitions where constraints are activated
using an incremental arc-consistency algorithm and a backward phase corresponding to the backward rule
that is evoked to solve any conflict raised during the forward phase.

3.1 The Forward Algorithm

Since methods to verify strong K-consistency are exponential for K > 2, [5], other weaker consistency
conditions, such as Arc-consistency (K = 2) [6], are usually better suited for real implementations.

The forward algorithm is an adaptation of an arc consistency algorithm based on constraint propagation,
generalized for the case of constraints with an arbitrary number of variables. In our implementation we
adapted AC5 [10], but since arc consistency algorithms are not the main issue of this article, a simplified
algorithm is described to keep this presentation clear.

The forward rule is implemented with function Forward. A counter AO is increased any time a new
constraint c is inserted in the active store, to update the activation order of that constraint (AO,). This
order will be needed in the backward phase, as will be seen iater.

A set of trail stacks are also kept to undo work in the backward phase when constraints are deactivated.
For each constraint c a trail stack 7, is kept to record any transformation made on data structures caused by

203

the activation of c. The set of all trail stacks may be seen as a single partitioned trail stack. This partitioning
allows to save work that is not related with the conflict raised, as it will be seen in the backward phase.

function Forward()
while US = cj US' do

AS .- ASu{c,)
AO .- AO+ I
AO,,,.-- AO
Enqueue(cj, Q) % Q initially empty
while Dequeue(Q, cL) do

if not Revise(c, T,,, Q) then
if not Backward(ck) then return false

return true

Function Revise(c, T, Q) performs the removal of inconsistent values from domains of c variables and
updates information about dependency between constraints (see below). All these transformations are
stacked in trail 7 and all active constraints over affected variables are enqueued in Q (the propagation
queue). If there are no values to satisfy c then Revise(c, 7, Q) returns "false", otherwise "true".

When the revision of some constraint c fails, the backward algorithm will examine this dependency
information to find out the pertinent causes of the failure and what will be affected by the relaxation of some
constraints. The domain of variable v is denoted by D, and for each constraint c, the set of its variables is
designated by V, (V, C V).

Definition 7 (Constrainer) c (c E AS) is a constrainer of v (v E V,) if it actually caused the reduction
of D,, i.e., values where removed from D, during some revision of c.

Definition 8 (Immediate Dependent\Supporter) ck is an immediate dependent of cj (conversely cj is
an immediate supporter of ck), written cj -. ck, iff 3v E V,, s.t. cj is a constrainer of v.

Definition 9 (Immediate Related) cj is immediate related to ck , written cj --. Ck, iff Ci -- ck or Ck -- cj.

A special dependency graph (TPg) is used to record dependencies between constraints. The implementa-
tion of DCi and its proprieties are explained in [7]. By analyzing VC it is possible to compute Supportersc,
the set of all supporters of c (transitive closure of c-*) and Related,, the set of all constraints related to c
(transitive closure of --).

The dependency relation is based on local propagation of constraints in the following way: whenever a
constraint cj (cj E AS) makes a restriction on some v E V,,, any other constraint ck (ck E AS) such that
v E V,. will be reactivated and possibly cause the reactivation of further constraints, even if they do not
share any variable with cj. The restrictions performed by cj may consequently affect all those constraints
and for this reason they all become dependent of cj.

3.2 The Backward Algorithm

During the backward phase, the following requisites should be attained: a) only constraints pertinent to
the conflict should change status (relaxed or reactivated), to avoid un-useful search; b) a potentially best
configuration must be re-achieved, to obtain a sound behavior; c) no promising configuration should be
repeated, to avoid loops; d) no promising configuration should be skipped, for completeness of the algorithm;
e) global consistency of the new active store must be re-achieved, undoing as little work as possible.

The relaxed store 1ZS is implicitly maintained: for each active and unexplored constraint c, an opponent
constraints set is kept (OC,) with all the relaxed constraints with whom c had previous conflicts and 1Z$ =

CEtAYU5us OC,. This representation allows an easy access to candidates for re-activation, should c be relaxed.

The hierarchical level of c is expressed by level,.

204

function Backward(in ci)
-AS.nf - ick E AS I level,, > 0 and ck E Supporters,,} % StepI)

if AScof =0 then return false %
else % Conflict

/.,/o -{c E US I level, > 0} % Configuration

"-So. -. U 0'0 %

ActivateRelaxSets(ZASconf U UScor e .--con.), Activate, 'Relax) % Step2) Activate & Relax
Reset .-- {ck E AS I 3cj E Relax, AO,, > AOc, and ck E Relatedsc, } % Step3) Reset Set
untrail(T,) (Vc E 'Reset U Relaz) % Step4) Untrailing
AS -- AS \ ('Reset U 'Relax) % Step5)
OC, *- OC, \ Activate (Vc E C) % New
OCl - 0C, U Relax (Vc E (ASconf U RSconf U USconf)) % Configuration

US -- (US \ 'Relax) U 'Reset U Activate %
return true

Conflict configuration. Step 1 of the backward algorithm computes the conflict configuration tconr =
(ASconf 0 IRSconf * USconr), which includes only those constraints pertinent to the conflict (ASco,0 f g AS,
'RScontf g RS and USconf 9 US). *conf is thus the only portion of the whole configuration that should be
changed to solve the conflict. ASon•f and UScof are the candidates for relaxation and 'RSconr the candidates
for re-activation. Note that although USconf does not contain any active constraint, some of them may have
to be relaxed (in this case, no longer activated) to ensure that all promising configurations will be tried.

The possible causes of the conflict are all the supporters of cj (the failing constraint). Those supporters
represent the constraints that directly or indirectly restricted the domains of the variables of cj, so that no
consistent values remained to satisfy c. Since required constraints may not be relaxed, .ASqcon will only
include the non-required supporters of the failing constraint. If ASconf is empty then there is no possible
solution to the conflict and the constraint hierarchy is not satisfiable.

The backward rule is the only rule that inserts constraints in the unexplored store. If the current conflict
is not the first to occur, then during the resolution of the previous conflict the backward rule generated a
promising configuration with unexplored constraints. After some transitions, that configuration proved to
be not convertible into a best configuration since it lead to the current conflict. The current conflict is thus
related to the previous one and U4Sconf is formed by all non required constraints left unexplored.

Constraints relaxed in previous conflicts should be reconsidered for re-activation, if some constraints
involved in those conflicts are now relaxed. There is a chance that the new relaxations will also solve those
early conflicts hence allowing previously relaxed constraints to be active now. IZSc~of is the set of candidates
for re-activation which are the opponents in previous conflicts of any candidate for relaxation.

Activate and Relax Sets. By analyzing the conflict configuration, this step determines which non re-
laxed constraints should be relaxed (the 'Relax set), and which relaxed constraints should be activated (the
Activate set) in order to obtain the next promising configuration. Since unexplored constraints are candi-
dates for activation, one can consider only two states in which a constraint can be: relaxed or non relaxed.
Therefore, step 2 of the backward algorithm only manipulates a simplified form of configurations with only
two stores, (.,VS 'RS), where the first store contains the non relaxed constraints (active or unexplored) and
the second one the relaxed constraints.

As mentioned before, given a constraint store S, Si designates the subset of S containing all constraints
of level i. S<j and S>j are the subsets of S containing all constraints of levels lower and higher then i
respectively. Given a configuration 41 = (NS 9 'RS), its levels i is denoted by 4,i = (K'S e -RSj).

The CrB ordering is not a total ordering since some configurations are not comparable. A total
ordering is nevertheless necessary to enssure a sound and complete search for solutions without generating
the same configuration more than once. Definition 10 is a refinement of Definition 4, adapted for simplified
configurations and taking into account introduction orders. In case of ambiguity between configurations
not £*PB comparable, i.e. having exactly the same number of non relaxed constraints in each level, the
introduction orders of constraints are used in Condition 2 to determine the "best" configuration.

205

Definition 10 (Extended £rB) (ArSeRS) is locally-predicate-better then (AVS'7ZS') if exist some level

k such that:

1. Vi < k, #11, = #K$ý, and #AKSq > #A/;•

or

2. Vi, #XSj = #KS and

a. AS<< = V.< .

b. 3ci E A/Sk, 3cj E K/',k s.t. {ci E.A/S I I l < i) {ci E A/S' I I < j) and i < j.

Definition 11 (Restarted Level) A configuration level O, = (A/Sie .7ZS) is restarted, if Vcj E ISM, Vck E

AS,,j > k.

Informally a restarted level is the first permutation of constraints of that level with the same number
of relaxed constraints which is generated to access its satisfiability.

Example I Given 4o = ({cl(•lc 2 @1, C3(2, c6@31 0 {c 4@2, c5(3, c744, c,(34)), levels 01 = ({cic 2) 00),
-2 = ({c 3 } a {c4 }) and 04 = (0 0 {c7, c8)) are all restarted.

Definition 12 (Exhausted Level) A configuration level 0i = (XS, 9 Z-Si) is exhausted, if Vcj E 1RSI,
Vek E A/Si, j < k.

Informally, all permutation of constraints of an exhausted level with the same number of relaxed con-
straints have been (potentially) generated and tested before.

Example 2 Given configuration 4 of Example 12, levels 4 ' i = ({ci. c2 } 0), 4,3 = ({c 6) 0 {cs}) and 04 =

(0 . {C7, cs,) are all exhausted.

Procedure ActivateRelaxSets, used in Step 2 of the backward algorithm, computes the Activate and
7Relax sets in order to obtain the successor of (AS 0onf U UiSconf * 'RSconf) according to the extended £PB

ordering. This procedure is fully defined in [7]. Here we simply present examples of its behavior in three
illustrative situations.

Example 3 The successor of 4t = ({c1c41, c2 4•2, c3(•3} 4 {c441, c5(42. c6(43)) (in the extended LIPB ordering)
is ({cl(§1,c24@2, c6(3) * {c 3@f3, c4 41,cs(-2}). This is the simplest situation where the highest level (the
third) is not exhausted and thus it is the only level to be changed to the next. permutation with the same
number of relaxed constraints. From input 0, procedure ActivateRelaxSets produces Activate = {c6) and
7Relax = {C3}.

Example 4 The successor of 0 = (lci@1, c2@2, c6@3} * {fa@3, c4.@1, cs@2}) is (fc1 @1, C3@3, cs@2} 0 {C2@2,

CAI1, c6@31). Here the number of relaxed constraints in each level is also kept but the highest non exhausted
level (the second) is an intermediate level. Level 2 is thus changed to the next permutation with the same
number of relaxed constraints and level 3 is restarted. Procedure ActivateRelaxSets produces Activate =

{C3, CS) and Relax = {C2, C6} from input 4.

Example 5 The successor of 0 = ({c 2@2, c4@1,ca@2) * {cl(-l,c 3(§3, c6@3}) is ({cl(1, c242, c3@3,C6@3) 9
lc4@2, cs@3}). This is an extreme example where all levels are exhausted. Level 2 is the highest level
with a relaxable constraint and thus it is restarted with one extra relaxed constraint. Level I is restarted
with the same number of relaxed constraints and all relaxed constraints of level 3 are activated. A worst

configuration is thus obtained. From input 4', procedure ActivateRelaxSets produces Activate = {c1 , c3 , C6)

and Relax = {c., cs).

206

Reset Set. The Reset set contains all constraints that will have to be reset, i.e. moved from the active
store to the unexplored store (for subsequent activation "from scratch"), to re-achieve global consistency. If
cj is one of the active constraints to be relaxed and ck is a constraint activated after c. (AOk > AO,,),
then Ck needs to be reset if it is related to c. Either directly or indirectly by constraint propagation, cj
has caused the removal of some values from the domains of ck variables, that otherwise ck itself would be
charged to remove. Therefore ck will have to be reset to perform such removal. Alternatively, cj made more
removals after the activation of ck. Therefore ck will have to be reset, to be used in a context without such
removals have taken place.

Example 6 Given variables X and Y with initial domains Dx = Dy = 1..10, consider the following con-
straints: c1 E X + Y = 1541; c2 -- 3 .X - Y < 541; c3 E X > Y + 142; c4 = X < 7(42. The incremental
insertion of each constraint is given by the following transitions:

Relaxed
Action Configuration Dx Dy @1 @2 Rule

insert cl (0 04{c)}) 1.10 I..10 0 0 forward

({cW}O0 0) 5..10 5..10 0 0 base

insert c2 W{c) a0* c 2}) 5..10 5..10 0 0 forward
(Jc 1, c2) 0 0 0 0) 0 0 0 0 backward
({c1}0{c 2 })0) 5..10 5..10 1 0 base

insert c3 ({c 0 {c 2}) {c 31) 5..10 5..10 1 0 forward
({c1, c3) {c2 } 0) 7..10 5..8 1 0 base

insert c4 ({c1, c3} * {C2) 0 {c 4}) 7..10 5..8 1 0 forward
({c 1, c3 , c4 } 0 {c 2 }1 0) 0 0 1 0 backward
(ICI C3}*{c2 , c4 }- 0) 7..10 5..8 1 1 base

4 Extensions to Basic IHCS

In addition to the basic transition rules and algorithms, a number of extensions are incorporated in IHCS, al-
lowing it to search for alternative solutions, to incrementally remove constraints and to cope with disjunctions
of constraints.

4.1 Obtaining alternative solutions

Several best configurations of an hierarchy may exist since £CP8 ordering is not a total ordering. Given
(AS * eS * 0), the current best configuration, IHCS is able to find the next promising configuration, with a
slightly modified backward rule (the alternative rule).

Alternative rule

AS /x _L Relax C AS Activate C _RS 'Reset C (AS \ Relax) PC(4)
(AS * RZS .0) -.

where $ = (AS \ (Relax U Reset) e RS \ Activate U Relax R Reset U Activate)

This rule is implemented using the backward algorithm with slight modifications in Steps 1 and 2 in
order to find an alternative to a best configuration rather than to a conflicting one. In Step 1 all active
non required constraints must be considered instead of only the supporters of a failing constraint as in the
normal backward rule. In Step 2 the search for an alternative fails if an extra relaxed constraint is required
("if" branch of procedure ActivateRelaxSets) since the new configuration would be worse than the known
current best configuration.

The promising configuration 0 determined by the alternative rule will be input to the normal set of
rules (the base, forward and backward rules) to find a best configuration. If, at any, point an intermediate
configuration is worse than the previous one, the search for an alternative best solution fails.

207

Example 7 An alternative to the solution found in Example 6 is computed by the following transitions:

Relaxed
Configuration Dx Dy (91 (42 Rule

({c1, c3} 0 {c 2 , c) o 0) 7..10 5..8 1 1 alternative
({eC}) {c 2 ,c3 } 9 {c4}) 5..10 5_10 1 1 forward
({Cl, C4 {C2, C3) 0 0) 5..6 9..10 1 I base

4.2 Incremental Removal of Constraints

Given a best configuration (AS * 7ZS o 0) to a hierarchy 7J, the removal of a constraint c from 7 is straight-
forward if c is a relaxed constraint, and a best configuration is immediatly obtained by the following rule:

Relaxed Removal rule
AS /x- c E 1S

(AS 1ZS 0) -- (AS *S \ {c) .0)

If c is active, a slightly modified backward rule is necessary to obtain a promising configuration:

Active Removal rule

AS VxI c E AS Activate C_ ZS iReset C (AS \ {c)) PC(4)
(AS * 1ZS . 0) -t

where 0 = (AS \ ({c) U 7Reset) a 1ZS \ Activate o Reset U Activate)

This rule is implemented following Steps 3 to 5 of the backward algorithm, provided that Relar = {c}
and Activate = OC, and that c is not included in the relaxed store obtained. Feeding A$ to the normal set
of transition rules will lead to a best configuration.

Example 8 Removing the active constraint C4 from the configuration obtained in Example 7 produces the
following transitions:

Relaxed
Configuration Dx D)- (41 (42 Rule

(icl, c4 } 0 {c 2, ca}3 0) 5-6 9..10 1 1 active removal
({c, 1 {c 2 } {c 3}) 5_10 5..10 1 0 forward

({1, c3 } {c 2} 0) 7..10 5..8 1 0 base

4.3 Disjunctive Constraints and Inter-Hierarchies

In logic programming the alternatives to solve a goal are usually specified as different rules for the same
literal. This fact raises some problems, since different choices of rules in the logic program may produce
solutions arriving from different constraint hierarchies, sometimes producing non-intuitive solutions. In

[11] the HCLP scheme is extended with some non-monotonic properties of comparators to cope with inter-
hierarchy comparisons.

This problem was dealt with in IHCS by extending it with disjunctive constraints of the form c =
cI Vc 2 V ... V cn, where ci is a normal constraint representing the ith alternative of c. c can only be relaxed
if level, > 0 and all alternatives have already failed.

This extension, which is formalized in [7], enables the specification of more complex constraint hierarchies
and we take advantage of the dependency graph to backtrack intelligently to alternative choices.

Disjunctions however complicates the overall IHCS algorithm, as non exhausted disjunctions must be
integrated in conflict configurations. Since we want to minimize the number of constraints to be relaxed,
it is preferable whenever possible to try an alternative choice rather than relaxing extra constraints. As in
intelligent backtracking methods, an alternative set is associated to each disjunction - cf. the Alt sets of [4]
- and disjunctions to be re-inserted are restarted from the first alternative - cf. the selective reset of [3].

208

The use of disjunctive constraints is very useful for the final generation of solutions. After the pruning
due to all constraints being treated, some variables may still have several possible values in their domains.
If the domain of a variable v is {wl,... , wJ} then adding a constraint v = w, V... V v = u,, will assure that
a single value will be assigned to v within a best solution. We used such constraint as the basic definition
for a built-in value generator - predicate indornain(v).

5 Applications

We integrated IHCS with prolog to create a HCLP(fP, £PB) language, using pre-processing methods. At
present we are employing YAP prolog running on a NeXT Station 68040.

In this section we describe two problems with our HCLP language, namely a set-covering problem and
a time-tabling problem, to illustrate the applicability and declarativity of hierarchical constraints and the
efficiency of our incremental approach to solve them.

In the set-covering problem, the goal is to minimize the number of services required to cover a set
of needs (the problem variables designated by X1,..., X,,,). Each variable ranges over the set of services
that cover that need. The approach that we took to solve this problem is depicted in the following HCLP
program:

cover([Xi,...,Xml)
X1 = X2 vX = X 3 V... .VXI = X 4, 1,
X 2 = X 3 VX2 = X 4 V ... V X2 = Xm ,(1,

Xm-i =Xm Aq 1,
labeling([Xi,..., X].

For m needs, predicate cover/l states m - I disjunctive constraints of level 1. This set of constraints
will try to assure that the service assigned to variable Xi will also be assigned to at least some X,, j > i.

Predicate labeling/) simply uses the built-in predicate indomain to generate values for each variables. A
best solution (one that relaxes the minimum of constraints as possible) will correspond to the minimization
of services. Table 1 presents results obtained using several real life instances, taken from a Portuguese Bus
company. The time presented concerns the first (best) solution found and column Min reports the minimum
number of services required to cover the needs.

Table 1: Results for the set-covering problem

Needs Services Time Min

13 43 0.33s 6
24 293 3.98s 7
38 67 3.57s 11

The time-tabling problem is taken from the experience in the Computer Science Department of UNL,
but it is simplified so that no spatial constraints are considered (it is assumed that there are enough rooms)
and each subject is already assigned to a teacher (c.f. [8] for a full description). For this problem we used
a multi-level hierarchy to model preferences of different strength regarding the layout of blocks of subjects
in a time-table. Table 2 presents results for the generation of time-tables for three semesters. The first line
reports the results obtained by specifying only required constraints (teachers availability, blocks for the same
subject at different days, non overlapping of classes for the same semester or given by the same teacher).
Each of the other lines shows the effect of adding an extra hierarchical level.

Constraints in each level are designated to: level 1) avoid consecutive blocks of a subject at consecutive
days; level 2) avoid consecutive blocks of a subject to be apart by more than two days; level 3) disallow
any block, from a subject with only two blocks per week, to take place on mondays; 4) place blocks of the
same subject at the same hour. The Relaxed Constraints columns report the number of preferred constraints

209

Table 2: Results for the time-tabling problem

Max. Number of Relaxed Constraints
level constraints Time (41 (@2 (43 @4

0 356 1.80s (16) (1) (7) (15)
1 +21 = 377 l.86s 2 (4) (7) (11)
2 +21 = 398 1.98s 2 1 (5) (10)
3 +11 = 409 1.98s 2 1 1 (10)
4 +21 = 430 2.33s 2 1 1 0

relaxed in each level (in fact, values inside round brackets do not represent relaxed constraints, since that
level was not being used, but rather the number of those that are not satisfied by the solution).

The introduction of the preferred constraints of each level, significantly increases the quality of the
solution. The last one satisfies 95% of the preferences against only 47% satisfied by the first one with a mere
slowdown penalty of 32%.

6 Conclusion

This paper reports a first formalizaton of IHCS as a set of transition rules over hierarchy configurations. We
conjecture that the forward and backward algorithms presented are a) sound (only locally predicate better
solutionsare obtained), b) complete (all such solutions are computed), and c) non redundant (no repeated
solutions). These properties are yet to be formally proven, and this task is in our plans for future work.

The experimental results shown in the examples, are quite promising with respect to IHCS performance.
Yet, the algorithm complexity (both in time and memory requirements) is yet to be fully assessed. This
is likely to be related with the study for a potential replacement of the present criterion (locally-predicate-
better), which aims at finding some kind of optimal solutions, by a less demanding satisfiability criterion
(e.g. a solution is acceptable if a certain threshold of preferences is met).

References
[1] P. Barahona and R. Ribeiro. Building an Expert Decision Support System: The Integration of A] and OR

methods. In Knowledge, Data and Computer-Assisted Decisions. Springer-Verlag. Berlin Heidelberg, 1990.

[2) A. Borning, M. Maher. A. Martingale, and M. Wilson. Constraints hierarchies and logic programming. In
Proceedings of 6th ICLP, Lisbon, 1989. The MIT press.

[3] C. Codognet and P. Codognet. Non-deterministic Stream AND-Parallelism based on Intelligent Backtracking.
In Proceedings of 6th ICLP, Lisbon, 1989. The MIT press.

(4] C. Codognet, P. Codognet, and G. File. Yet Another Intelligent Backtracking Method. In Proceedings of 5th
ICLP/SLP, Seattle, 1988.

[5] Vipin Kumar. Algorithms for Constraint-Satisfaction-Problems: A Survey. Al Magazine, Spring 1992.
[6] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8:99-118, 1977.
[7] F. Menezes and P. Barahona. Report on IHCS. Research report, Universidade Nova de Lisboa, 1993.
[8] F. Menezes, P. Barahona, and P. Codognet. An Incremental Hierarchical Constraint Solver Applied to a Time-

tabling Problem. In Proceedings of Avignon 93,1993. Forthcomming.
[9] Luis Moniz Pereira and M. Bruynooghe. Deduction Revision by Intelligent Backtracking. In Implementations

of Prolog. J.A. Campbell, 1984.

[10] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A Generic Arc Consistency Algorithm and its Specializations.
Technical Report RR 91-22, K.U. Leuven, F.S.A., December 1991.

[11] M. Wilson and A. Borning. Extending Hierarchical Constraint Logic Programming: Nonmonotonocity and
Inter-Hierarchy Comparison. In Proceedings of the North American Conference 1989,1989.

210

Constraining the Structure and Style
of Object-Oriented Programs

Scott Meyers Carolyn K. Duby
Dept. of Computer Science Cadre Technologies, Inc.
Brown University, Box 1910 222 Richmond Street

Providence, RI 02912 Providence, RI 02903
sdm~cs.brown.edu ckdtcadre.com

Steven P. Reiss
Dept. of Computer Science
Brown University, Box 1910

Providence, RI 02912
spr(Qcs.brown.edu

Abstract

Object-oriented languages fail to provide software developers with a way to say many of the things
about their systems that they need to be able to say. To address this need, we have designed and
implemented a language for use with C++ that allows software developers to express a wide variety of
constraints on the designs and implementations of the systems they build. Our language is specifically
designed for use with C++, but the issues it addresses are applicable to other object-oriented languages,
and the fundamental software architecture used to implement our system could be applied without
modification to similar constraint languages for other object-oriented programming languages.

1 Introduction

C++ is an expressive language, but it does not allow software developers to say many of the things about
their systems that they need to be able to say. In particular, C++ offers no way to express many important
constraints on a system's design, implementation, and stylistic conventions. Consider the following sample
constraints, none of which can be expressed in C++:

" The member function M in class C must be redefined in all classes derived from C. This is an example
of a design constraint, because the constraint is specific to a particular class, C, and a particular

function in that class, M. This kind of constraint is common in general-purpose class libraries. For
example, the NIH class library [6] contains many functions which must always be redefined if the library
is to function correctly.

"* If a class declares a pointer member, it must also declare an assignment operator and a copy constructor.

This is an example of design-independent implementation constraint. Failure to adhere to this
constraint almost always leads to incorrect program behavior [16].

"* All class names must begin with an upper case letter. This is an example of one of the most common

kinds of stylistic constraint. Most software development teams adopt some set of naming conventions
that developers are required to follow.

Constraints such as these exist (usually only implicitly) in virtually every system implemented in C++,
but different systems require very different sets of constraints. That fact makes it untenable for C++ compilers

to search for constraint violations. Our approach to this problem is the development of a new language,

CCEL ("Cecil") - the C++ Constraint Expression Language - a language for use with C++ that allows

211

Int St T•,ngC÷ Ob3 ect.

Nalmed
object

TpdTp Temlplate•

Function Member , , Parameter

Figure 1: CCEL Class Hierarchy

software developers to specify a wide variety of constraints and to automatically detect violations of those
constraints.

We took as our original inspiration the lint tool for C programmers, but we quickly discovered that the
kinds of errors C programmers need to detect are qualitatively different from the errors that C++ programmers
need to detect [17]. lint concentrates on type mismatches and data-flow anomalies, but the stronger typing
of C++ obviates the need for lint's type-checking, and data flow analysis is typically unrelated to the high-
level perspective encouraged by the modular constructs of C++. Instead, C++ programmers are concerned
with concepts such as the structure of a design-specific inheritance hierarchy, but lint offers no provision
for design-specific error detection. The most fundamental difference, then, between lint and CCEL is that
CCEL was designed from the outset to allow for the addition of programmer-defined constraints.

An earlier working paper describing CCEL has already been published [4], but since the time of that
publication we have made significant improvements to both the language and the software architecture built
around it. Such improvements include a simpler, more uniform syntax; a set of predefined types that is more
expressive and is easier to understand and use; and an implementation architecture that is more portable,
more robust, and has a more convenient user interface.

2 Design Considerations, Syntax, and Semantics

Our primary requirements in designing CCEL were these:

"* It must offer sufficient expressive power to allow programmers to specify a wide variety of constraints,
including constraints on both concrete syntax (stylistic constraints) and semantics (design and imple-
mentation constraints).

"* It must be relatively easy to learn and use. In particular, the syntax and semantics of the language
should mesh well with the syntax and semantics of C++. We chose as our point of departure C++ itself
and the well-known assert macro.

Like the programs C++ is used to build, CCEL has an object-oriented basis. CCEL classes represent the
concepts of C++. The CCEL classes are arranged in a multiple inheritance "isa" hierarchy (see Figure 1),
and each class supports a particular set of member functions (see Table 1).

Syntactically, CCEL constraints resemble expressions in the predicate calculus, allowing programmers
to make assertions involving existentially or universally quantified CCEL variables. In general, constraint

212

CCEL Class I Member Function CCEL Class J Member Function jj
/at lnt operator == (Int) Type Int has-name(String)

Int operator < (Int) Type basic.type()
Int operator ! () Int operator == (Type)
Int operator && (Int) Int is-convertiable-to(Type)
Int operator 1I (Int) Int ishenum()
hnt operator != (Int) Int is-class()
Int operator > (Int) Int is.struct()
lnt operator <= (Int) lnt is.union0
Int operator >= (Int) lnt is-friend(Class)

String Int operator == (String) lnt is-child(Class)
fat operator < (String) Int is-descendant(Class)
Int matches(String) Int is.virtuaL-descendant(Class)
String operator + (String) Int is-public-descendant(Class)
Int operator != (String) Int operator != (Type)
Int operator > (String) Template Int is-class-template0
lnt operator <= (String) Int is-function.template()
Int operator >= (String) Function lnt is-global()

C++Object String file() Int num-paramb()
Int begin-line() nt is-inline()
Int end-line() Int is-friend(Class)

NamedObject String name() Member Int is-private()
TypedObject Type typeo Int is-protected()

Int num-indirections() Int is.public()
Int is.reference0 Variable Int scope-isjfile()
Int is-static0 Int scope.is.Jocal()
Int is.volatile0 AnyParameter Int position()
lnt ,aconst() Class
Int is.array() MemberFunction Int is.virtual()
Int iZiong() nt is-pure-virtual()
Int is-short() fat overrides(MemberFunction)
Int is.signed() DataMember
Int is-unsigned() Parameter lnt has-default-value()
Int is-pointer() TypeParameter

Table 1: CCEL Class Member Functions

violations are reported for each combination of CCEL variable bindings that causes an assertion to evaluate
to false.

There are five parts to a CCEL constraint:

1. A unique identifer that serves as the name of the constraint.

2. A set of declarations for universally quantified CCEL variables. Such variables take as their values
components of C++ programs. Each CCEL variable has a type; this type is one of the CCEL classes
shown in Figure 1.

3. An assertion that comprises the essence of the constraint. Assertions may use universally quantified
CCEL variables and may declare and use existentially quantified CCEL variables.

4. A scope specification that determines the region of applicability of the constraint in relation to the
C++ source being checked. By default, constraints are globally applicable, but they may be restricted
to a single file, function, or class.

5. A message to be issued when a violation of the constraint is detected.

Of these five parts, only the constraint identifier and the assertion are required. If omitted, the set of CCEL
variables is empty, the scope of applicability is global, and constraint violations are indicated by a message
in a default format.

213

As an example of a CCEL constraint, consider Meyers' admonition [16] that every base class in C++
should declare a virtual destructor:

BaseClassDtor (This constraint is called "BaseClassDtor":
Class B; For all classes B,
Class D I D.is-descendant(B); for all classes D such that D is a descendant of B,
Assert(MemberFunction B::m; f there must exist a member function m in B such that

m.name() == "-" + B.name0 && m's name is a tilde followed by B's name and
m.is-virtual0); m is a virtual function.

Within this constraint, the variables B and D are universally quantified,' and m is existentially quanti-
fied. The scope of the constraint has been omitted, so it applies to all classes. The violation message has
also been omitted. This constraint is in fact an important one in practice, because programs that violate it,
though legal, almost always behave incorrectly [171.

The assertion inside a constraint is evaluated only if it is possible to find a binding for each of the
universally quantified variables declared in the constraint. It can therefore be useful to write constraints
containing assertions that always fail, the goal being to detect the ability to bind to a universally quantified
variable. For example, class templates in C++ may take either type or non-type parameters, but function
templates may take only type parameters, and this inconsistency (as well as other considerations) may make
it advisable to avoid non-type parameters in templates of any kind. This rule can be formalized in CCEL
as follows:

// Templates should take only type parameters:
TypeParametersOnly (

Template t; For all templates t and
Parameter t<p>; all non-type parameters p of t
Assert(FALSE); issue a violation message.

Individual constraints are useful, but it is often convenient to group constraints together. This is espe-
cially the case with stylistic constraints, because a consistent style can typically be achieved only through
adherence to a number of individual constraints. CCEL provides for this grouping capability through sup-
port for constraint classes, which comprise a set of individual constraints. For example, suppose there are
several constraints on naming conventions. They could be grouped together into a constraint class called
NamingConventions:

NamingConventions {
// Every class name must begin with an upper case letter:
CapitalizeClassNames (

Class C; // C is a class, struct, or union
Assert(C. nameO.matches(" "[A-Z]"));

//Every function name must begin with a lower case letter:
SmallFunctionNames (

Function F;
Assert(F. name(. matches("A [a-z]"));

'1B and D are both of type Class, which technically corresponds to C++ classes, structs, and unions, i.e., any language
construct that may contain member functions. Hence B and D may he bound to any of these language constructs. This use of
the term "class" is consistent with that employed by the C++ language reference manual [5]. Member functions in the CCEL
class Class allow programmers to distinguish between classes. structs, and unions.

214

Notice that the extent of constraint classes is demarcated by brackets {...}, while individual constraints use
parentheses as their delimiters.

Sometimes what is a single conceptual constraint is best expressed using a set of simpler constraints
bundled into a constraint class. The following example consists of a pair of constraints that detects undeclared
assignment operators for classes that contain a pointer member or are derived from classes containing a
pointer member. This is an important constraint in real-world C++ programs [16] and is one that cannot be
specified in C++ itself:

PointersAndAssignment {
//If a class contains a pointer member, it must declare an assignment operator:
AssignmentMustBeDeclaredCondl (

Class C;
DataMember C::cmv I cmv.is-pointerO;
Assert(MemberFunction C::cmf; I cmf.name() == "operator=");

/If a class inherits from a class containing a pointer member, the
//derived class must declare an assignment operator:
AssignmentMustBeDeclaredCond2 (

Class B;
Class D I D.is-descendant(B);
DataMember B::bmv I bmv.is-pointer0;
Assert(MemberFunction D::dmf; I dmf.nameO == "operator=");

By default, a constraint applies to all code in the system. This is not always desirable. For example,
a programmer might have one set of naming conventions for a class library and a different set of naming
conventions for application-specific classes. CCEL explicitly provides for the need to restrict the applicability
of constraints to subsets of the system being checked. In particular, the scope of a constraint may be restricted
to any named portion of a C++ system: a file, a function, or a class. For files, scopes are specified in terms
of UNIX shell wildcard expressions. For functions and classes, scopes are specified in terms of UNIX regular
expressions. For example, if we wanted to limit the applicability of CapitalizeClassNames to the file file.h, we
could declare a scope for the constraint. Such scope specifications precede the name of the constraint:

// The name of every class declared in the file "file.h" must begin with a capital letter:
File "file.h": CapitalizeClassNames (

Class C;
Assert(C.nameo.matches(" A[A-Z]"));

Sometimes it is more convenient to specify where an otherwise global constraint does not apply. This can
be accomplished by creating a new constraint with a restricted scope of application. The new constraint
does nothing but disable the constraint that should not apply to the specified scope. Such disabling occurs
through the Disable keyword. For example, to set things up so that CapitalizeClassNames applies to every
C++ class except class X, we could disable CapitalizeClassNames for that class (note the use of a regular
expression to specify only the class name "X"):

//Do not report violations of CapitalizeClassNames in class X:
Class "'X$" : DontCapitalizelnX (

Disable CapitalizeClassNames;

Like individual constraints, constraint classes may be disabled. This is most frequently combined with
a scoping specification:

215

/Ignore naming conventions for the file "importedFromC.h":
File "importedFromC.h" : NamingConventionsOff (

Disable NamingConventions;

Individual members of a constraint class may be disabled by referring to them using the C++ scoping
operator("::"):

// Turn off the constraint NamingConventions::CapitalizeClassNames for the file file.h only:
File "file.h" : SomeNamingConventionsOff (

Disable NamingConventions::CapitalizeClassNames;

When a constraint violation is detected, a message to that effect is issued identifying the location of
the CCEL constraint, the name of the C++ object bound to each universally quantified variable, and the
location of each object so bound. Locations consist of a file name and a line number corresponding to the
beginning of the source code for the object being identified. For example, consider this declaration for an
array template:

template<class T, int size> class BoundedArray { ...

This template violates the TypeParametersOnly constraint discussed earlier, so a violation message in the
following format would be issued:

"constraints.ccel", line 100: TypeParametersOnly violated:
t = BoundedArray ("BArray.h", line 15)
p = size (" BArray.h", line 15)

CCEL allows this default message format to be overridden by a programmer-defined format on a per-
constraint basis. Details are available in the CCEL language specification [8].

3 A Software Architecture

The architecture for our prototype constraint-checking environment is shown in Figure 2. CCEL constraints
may be specified in one or more files and/or within a C++ program in the form of specially formatted
comments. All features of CCEL may be used inside C++ source, but we expect programmers will use this
capability primarily to specify constraints specific to a class or file, i.e. to associate a constraint with the
C++ source to which it applies. For example, a constraint stating that all subclasses of a class must redefine
a particular member function might be best put in the C++ source file for the class so that programmers
know that they will need to define that member function. A more generic constraint, such as that every class
name must begin with an upper case letter, might go in a file containing nothing but stylistic constraints.

The constraints specified in CCEL constraint files and the constraints specified in special comments in
C++ source code together comprise the set of applicable constraints for the software system to be checked.
This set of constraints is then used as input to a constraint checker, which employs the services of an
"oracle" about the C++ system being checked. The oracle is in essence a virtual database system containing
information about C++ programs. There are many actual database systems containing such information
(e.g., Reprise[20], CIA++[7], and XREFDB[11]), and our virtual database interface allows us to decouple
the constraint-checker from any particular database. In fact, our eventual virtual database interface will be
OQL ("Object Query Language") [191, a virtual interface to many database systems.

The output of the constraint checker is a series of violation messages. These may be viewed as is, or
they may be parsed by higher-level tools, such as Emacs [21] or the annotation editor inside FIELD [18].
Use of such tools allows programmers to see not only CCEL constraint violation diagnostics, but also the
CCEL source giving rise to the violation and the C++ source that violates the constraint. This makes it
much easier to locate and eliminate constraint violations.

216

L""3+ "• C ++ r
source Source:d

Programmers

Figure 2: CCEL System Architecture

Our earlier working paper [4] described a prototype implementation of CCEL that was less elaborate
than that shown in Figure 2. We are currently implementing a second-generation prototype that corresponds
to the current (much expanded) language specification [8] and that is based on the database XREFDB.

4 Application to Other Languages

The classes supported by CCEL and the member functions of those classes are clearly specific to C++.
The more fundamental design principles behind COEL, however, apply equally well to other object-oriented
languages. The kinds of constraints described in Section 1 exist for languages like Smalltalk and CLOS
as much as they do for C++ [9]. The desireability of choosing a syntax, semantics, and conceptual model

that is familiar to programmers is as important for an Eiffel constraint language as it is for CCEL. The
software engineering considerations that allow CCEL constraints to be bundled into constraint classes, to
be explicitly disabled, and to have user-specified scopes and violation messages are as important for Object
Pascal programmers as they are for C++ software developers. Furthermore, the software architecture depicted
in Figure 2 contains nothing that tailors it to the idiosyncrasies of C++. In short, the primary design
considerations -- both in terms of the language itself and the implementation of that language - are
divorced from the specifics of C++ and can be directly applied to constraint languages for other object-
oriented languages.

5 Related Work

In their analysis of the CLOS Metaobject Protocol [9], Kiczales and Lamping identified a number of issues
germane to the design of extensible class libraries, and they proposed a set of informal techniques by which
to specify requirements and restrictions on classes inheriting from the library. OCEL is an important step
towards formalizing such requirements and restrictions and toward making them amenable to automatic
verification.

Support for formal design constraints in the form of assertions or annotations was designed into Eif-
fel [14], has been grafted onto Ada in the language Anna (13], and has been proposed for C++ in the form of
A++ [3, 2]. This work, however, has grown out of the theory of abstract data types [12), and has tended to
limit itself to formally specifying the semantics of individual functions and/or collections of functions (e.g.,
how the member functions within a class relate to one another). In general, violations of these kinds of

217

constraints can only be detected at runtime. Our work on CCEL has a different focus. We are interested
in constraints whose violations can be detected at compile time, and we are further interested in addressing
the need to constrain relationships between classes, which Eiffel, A++, and Anna are unable to do. CCEL
can also express constraints on the concrete syntax of C++ source code (e.g., CCEL class-specific naming
conventions); this is also outside the purview of semantics-based constraint systems.

Acknowledgements

Yueh hong Lin provided valuable comments on earlier versions of this paper.
Support for this research was provided by the NSF under grants CCR 9111507 and CCR 9113226, by

ARPA order 8225, and by ONR grant N00014-91-J-4052.

References
[1] David R. Barstow, Howard E. Shrobe. and Erik Sandewall, eds., Interactive Programming Environments.

McGraw-Hill, 1984.

[2] Marshall P. Cline and Doug Lea, "The Behavior of C++ Classes," in Proceedings of the Symposium on Object-
Oriented Programming Emphasizing Practical Applications (SOOPPA), pp. 81-91, September 1990.

[3] Marshall P. Cline and Doug Lea, "Using Annotated C++," in Proceedings of C++ at Work - '90, pp. 65-71,
September 1990.

14] Carolyn K. Duby, Scott Meyers, and Steven P. Reiss, "CCEL: A Metalanguage for C++," in USENIX C++ Con-
ference Proceedings, August 1992. Also available as Brown University Computer Science Department Technical
Report CS-92-51, October 1992.

[5) Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual. Addison Wesley, 1990.

[6] Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico, Data Abstraction and Object-Oriented Programming
in C++. John Wiley & Sons, 1990.

[7) Judith E. Grass and Yih-Farn Chen, "The C++ Information Abstractor," in USENIX C++ Conference Proceed-
ings, pp. 265-277, 1990.

[8) Yueh hong Lin and Scott Meyers, "CCEL: The C++ Constraint Expression Language." In preparation, February
1993.

[9] Gregor Kiczales and John Lamping, "Issues in the Design and Specification of Class Libraries," in Proceedings
of the 1992 Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA '92)
(Andreas Paepcke, ed.), pp. 435-451, October 1992.

[10] Moises Lejter, Scott Meyers, and Steven P. Reiss. "Adding Semantic Information To C++ Development Environ-
ments," in Proceedings of C++ at Work - '90, pp. 103-108, September 1990.

[11] Moises Lejter, Scott Meyers, and Steven P. Reiss, "Support for Maintaining Object-Oriented Programs," IEEE
Transactions on Software Engineering, vol. 18, no. 12, December 1992. Also available as Brown University Com-
puter Science Department Technical Report CS-91-52, August 1991. An earlier version of this paper appeared
in the Proceedings of the 1991 Conference on Software Maintenance (CSM '91), October 1991. This paper is
largely drawn from two other papers [15, 10].

[12) Barbara Liskov and John Guttag, Abstraction and Specification in Program Development. The MIT Press, 1986.

113] D. Luckharn, F. von Henke, B. Krieg-Bruckner, and 0. Owe, Anna, A Language for Annotating Ada Programs:
Reference Manual, vol. 260 of Lecture Notes in Computer Science. Springer-Verlag, 1987.

[14] Bertrand Meyer, Object. Oriented Software Construction. Prentice Hall International Series in Computer Science,
Prentice Ball, 1988.

[15) Scott Meyers, "Working with Object-Oriented Programs: The View from the Trenches is Not Always Pretty," in
Proceedings of the Symposium on Object-Oriented Programming Emphasizing Practical Applications (SOOPPA),
pp. 51-65, September 1990.

[16] Scott Meyers, Effective C++: 50 Specific Ways to Improve Your Programs and Designs. Addison-Wesley, 1992.

[17] Scott Meyers and Moises Lejter, "Automatic Detection of C++ Programming Errors: Initial Thoughts on a
lint++," in USENIX C++ Conference Proceedings, pp. 29-40, April 1991. Also available as Brown University
Computer Science Department Technical Report CS-91-51, August 1991.

218

[18] Steven P. Reiss, "Connecting Tools using Message Passing in the FIELD Program Development Environment,"
IEEE Software, pp. 57-67, July 1990. Also available as Brown University Computer Science Department Tech-
nical Report CS-88-18, 'Integration Mechanisms in the FIELD Environment," October 1988.

[19) Steven P. Reiss and Manojit Sarkar, "Generating Program Abstractions." Working paper, September 1992.

[20] David S. Rosenblum and Alexander L. Wolf, "Representing Semantically Analyzed C++ Code with Reprise," in
USENIX C++ Conference Proceedings, pp. 119-134, April 1991.

(21] Richard M. Stallman, "EMACS: The Extensible, Customizable, Self-Documenting Display Editor," in Proceed-
ings of the ACM SIGPLAN/SIGOA Symposium on text Manipulation, pp. 147-156, June 1981. Reprinted in [1,
pp. 300-325].

A Examples

The CCEL constraints that follow serve to demonstrate not only the expressiveness of CCEL itself, but also the kinds
of constraints that C++ programmers might well want to express.

The following two constraints are taken from Meyers' book [16]:

// Subclasses must never redefine an inherited non-virtual member function:
]olonVirtualRedefines(

Class B;
Class D I D.is-descendant(B);
MemberFunction B: :baf;
MemberFunction D::daf I daf.ovezrides(bmf);
Assert (bmf. isv virtual));

// The return type of operator- must be a reference to the class:
ReturnTypeOfAssignpentfOp (

Class C;
RemberFunction C::nf I .f.name() - operator=";
Assert(af.isreference() 0 & af.type() .basic.type() 0- C);

The constraint that structs in C++ should be the same as structs in C (useful for maintaining data structure
compatibility between the two) consists of three separate constraints: (1) no struct may contain a non-public member,
(2) no struct may contain a function member, and (3) no struct may have a base class. These constraints may be
combined into a single constraint class StructsAreSimple as follows:

// Structs in C++ should be just like structs in C:
StructsAreSimple {

Class s I s.is-structO;

AllNembersPublic (
Data~ember s::mv;
Assert (mv. is-public 0);

NoMeaberFunctions (
MeaberFunction s: :mf;
Assert (FALSE);

UoBaseClasses (
Class base I s.is-descendant(base);
Assert (FALSE);

2;

219

Here is another constraint from Meyers' book, this one also employing a constraint class:

IIAll classes declaring or inheriting a pointer member must declare a

IIcopy constructor:
BecesearyCopyConstructors

// All classes declaring a pointer sember mast declare a copy ctor:

PtrDecllmpliesCopyCtor(
Class C;
Datallember C::av I mv.io-.pointerO;

Assert (MemberF~uact ion C: :ml; Parameter st(p); I

at.nme()- C.aame) hk ml.num..paraws(- I Uk

p.typeO.basic..tipe(- C BA p.is..reierence() kh

p. is.constO);

IIAll classes inheriting a pointer member mast declare a copy ctor:

InherPtrlmpliesCopyCtorC
Class B;
Class D I D. is~descendant (B);
Data~ember B::my I my. is.pointerO;
Assert (NemberFunctiofl D: in!; Parameter mf(p); I

mt nameO)- D.name() U mf.num-.params() --

p. type O.basic..type(0 -- D Bk p.is..reterence() U

p. is..conStO);

The following constraint enforces a common rule of style:

IIMembers must be declared in this order: public, protected, private:

MemberDeclOrdering{

Class C;
Member C::pub I pub.is-.publicO);
Member C::prot I prot.is-.protectedc3;
Member C::priv I priv.is-.privateO);

PublicleforeProtected (

Assert (pub. begin-.lineC 0 prot .begin-.lineO);

PublicleforePrivate
Assert (pub. begin-.line 0) < prir .begiu..line C);

ProtectedleforePrivateC
Assert (prot -begin..line() < priv.begin-.lin*O);

220

Higher-Order Logic Programming
as

Constraint Logic Programming

Spiro Michaylov
Department of Computer and Information Science

The Ohio State University
Columbus, OH 43210-1277, U.S.A.

spirofcis .ohio-state. edu

Frank Pfenning
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213-3891, U.S.A.
lpQcs.cmu.edu

Abstract

Higher-order logic programming (HOLP) languages are particularly useful for various kinds of meta-
programming and theorem proving tasks because of the logical support for variable binding via A-
abstraction. They have been used for a wide range of applications including theorem proving, program-
ming language interpretation, type inference, compilation, and natural language parsing. Despite their
utility, current language implementations have acquired a well-deserved reputation for being inefficient.
In this paper we argue that HOLP languages can reasonably be viewed as Constraint Logic Program-
ming (CLP) languages, and show how this can be expected to lead to more practical implementations
by applying the known principles for the design and implementation of practical CLP systems.

1 Introduction

Higher-order logic programming (HOLP) languages [17] typically use a typed A-calculus as their domain
of computation. In the case of AProlog [18] it is the simply-typed A-calculus, while in the case of Elf
[22] it is a dependently typed A-calculus. These languages are particularly useful for various kinds of meta-
programming and theorem proving tasks because of the logical support for variable binding via A-abstraction.
They have been used for a wide range of applications including theorem proving 13], programming language
interpretation [5, 13], type inference [21], compilation [6], and natural language parsing [20]. Despite their
utility, current language implementations have acquired a well-deserved reputation for being inefficient. In
this paper we argue that HOLP languages can reasonably be viewed as Constraint Logic Programming (CLP)
languages [8]. Measurements with an instrumented Elf interpreter confirm that such a view can produce
practical benefits, as the known principles for the design and implementation of practical CLP systems [9, 12]
are directly applicable to making implementations of HOLP languages more efficient.

The core domain of the languages we consider is the set of typed A-expressions, where abstraction
and application are the only interpreted operations and equality is the only relation (interpreted as #no-
convertibility). There are other features of these languages that distinguish them from the CLP language
scheme as defined in [8], for example, higher-order predicates, dependent or polymorphic types. modules,
embedded implication and universal quantification. Many of these features have been addressed in a satis-
factory way in ongoing implementation projects at Duke and IRISA/INRIA in Rennes. Surveys and further

221

references to the design of these implementations can be found in [11] and [1]. In this paper we will concen-
trate on the issues related to the view of higher-order logic programming as constraint logic programming
which, we believe, has the most fundamental impact on expected execution speed.

2 Solving Equations Between Typed \-Expressions

Full unification in higher-order languages is clearly impractical, due to the non-existence of minimal complete
sets of most-general unifiers (7]. Therefore, work on AProlog has used Huet's algorithm for pre-mnification [7],
where so-called flex-flex pairs (which are always unifiable) are maintained as constraints, rather than being
incorporated in an explicit parametric form. Yet, even pre-unifiability is undecidable, and sets of most
general pre-unifiers may be infinite. While undecidability has not turned out to be a severe problem, the
lack of unique most general unifiers makes it difficult to accurately predict the run-time behavior of AProlog
programs that attempt to take advantage of full higher-order pre-unification. It can result in thrashing when
certain combinations of unification problems have to be solved by extensive backtracking. Moreover, in a
straightforward implementation, common cases of unification incur a high overhead compared to first-order
unification. These problems have led to a search for natural, decidable subcases of higher-order unification
where most general unifiers exist. Miller [15] has suggested a syntactic restriction (Lx) to AProlog, easily
extensible to related languages [23], where most general unifiers are unique modulo P/Yo-equivalence.

Miller's restriction has many attractive features. Unification is deterministic and thrashing behavior due
to unification is avoided. Higher-order unification in its full power can be implemented if some additional
control constructs (when) are available [16].

However, our empirical analysis [14] suggests that this solution is unsatisfactory, since it has a detrimen-
tal effect on programming methodology, and potentially introduces a new efficiency problem. Object-level
variables are typically represented by meta-level variables, which means that object-level capture-avoiding
substitution can be implemented via meta-level #-reduction. The syntactic restriction to LA prohibits this
implementation technique, and hence a new substitution predicate must be programmed for each object
language. Not only does this make programs harder to read and reason about, but a substitution predicate
will be less efficient than meta-language substitution. This is not to diminish the contribution that L% has
made to our understanding of higher-order logic programming. As we will describe below, it forms the basis
for our approach to the implementation of HOLP languages.

3 A Practical Approach to Constraint Logic Programming

The generality of the CLP scheme allows languages to be defined that raise two important implementation
problems:

" High overhead for frequently-occurring simple constraints.
It has been observed (9, 12) that the constraints that occur most frequently in the execution of pro-
grams in many CLP systems are relatively simple. However, the generality needed to solve the more
complicated, but rarely occurring constraints tends to introduce overheads for solving all constraints.
Ideally, it should be possible to solve the simple constraints without incurring this overhead.

" Some constraints may be too hard to solve or solve efficiently.
For many seemingly desirable domains, the required decision algorithms simply do not exist. For others,
the decision problem may be open. For many more domains, either the decision problem is known to be
intractable, or the best known algorithms are impractical. Even when a reasonably efficient decision
procedure exists, it may be incompatible with the CLP operational model. In particular, a CLP
implementation requires incremental satisfiability testing to be efficient. That is, it must be possible
to determine efficiently whether a satisfiable set of constraints, augmented with a new constraint, is
still satisfiable. Efficiency here loosely means that the time should be proportional more to the size of
the added constraint than that of the previous, satisfiable, set. Furthermore, because of backtracking,
it must be possible to undo such augmentations of the constraint set efficiently.

222

Solving the first problem requires that the system be implemented with a bias towards frequently
occurring constraints. A data structure that is most appropriate for certain special cases but cumbersome
and inefficient for the general case can often result in dramatically improved overall performance.

One approach to the second problem is to syntactically restrict the kinds of constraints on the given
domain that can be expressed. Such syntactic restrictions determine what expressions can be constructed
using the operators, and what expressions the various relation symbols can be applied to. For example,
arithmetic expressions could be restricted to be linear. It turns out that syntactic restrictions on constraints
often rule out useful and natural programs. Such programs contain syntactically complex expressions that
are typically simplified by the time they are selected at runtime. For example, a non-linear expression could
become linear after instantiation of some variables.

We advocate another approach, by which constraints that cannot be decided (or decided efficiently) at
the time they arise are delayed with the expectation that the problem will be simplified under additional con-
straints. This approach can be justified under two diametrically opposed philosophies underlying constraint
logic programming.

In the first, perhaps more traditional view of constraint programming, it is important that the program-
mer should not have to be concerned with when information becomes available but just needs to provide
enough constraints for it eventually to become available. Under this philosophy, the delaying approach
achieves some amount of independence of the order in which constraints arrive at the solver without unduly
restricting programs. This philosophy and the justification of delay is described in considerable detail by Jaf-
far et al. in [10], where it is argued further that delay does not require the programmer to think substantially
more algorithmically.

The second view advances that a constraint logic programming language is a logic with a completely
specified operational semantics, which programmers should know in order to predict runtime behavior and
evaluate the efficiency of their programs. Under this view, the delaying semantics is simply a design decision
in the specification of the language permitting a larger range of algorithms to be expressed concisely and
naturally.

It is shown in [10] that delay can be implemented with overhead proportional to the number of delayed
constraints whose state is affected by each additional constraint, rather than the total number of delayed
constraints. The issue of how to restrict a CLP language appropriately has often arisen and been addressed
in different ways in real systems. In CLP(*R) (9], the selection rule is modified to delay nonlinear constraints
until they become linear. A similar approach to nonlinear arithmetic has been adopted in recent commercial
versions of Prolog Ill. Furthermore, the same approach is now used in Prolog III to deal with the intractability
of word unification: word equations are delayed until the length of the value of initial variables is known.

We have studied a selection of 12 representative and non-trivial Elf programs with a total of about
3500 lines of code [14]. We analyzed these programs from a static and dynamic perspective. Our study
demonstrates that the above observations and strategies for dealing with the problems of CLP languages in
general are directly applicable to HOLP languages, and that a considerable performance improvement can
be expected. Conversely, the HOLP languages provide further evidence of the general applicability of this
approach.

4 Special Cases of HOLP Constraints

Terms in Elf and AProlog that contain no abstraction or functional variables correspond directly to first-order
terms (as in Prolog). Our empirical study showed that most unification was either simple assignment or first-
order (Herbrand) unification: around 95%, averaged over all examples. When A-abstractions are present,
substitution of a term for a bound variable ($-reduction) is a common operation. Most of these (about 95%)
substitute a parameter' for a variable. Because first-order unification and parameter substitution dominate,
the representation should be designed to handle these cases particularly efficiently.

The obvious representation for terms is that corresponding to first-order abstract syntax: a DAG with
special nodes for application, abstraction etc. This is problematic because the frequently occurring first-order
unification cases rely heavily on finding the principal functor, which in this representation is at the head

I A parameter (sometimes called eigenvariable) acts like a constant in unification, but has proper scope. It arises from solving
universally quantified goals.

223

U40

MlM

Figure 1: Conventional and Functor/Arguments term representations for Elf

of the spine of applications. Consider, for example, the representation of the term FMIM2 .AJ3AI4 shown
on the left in Figure 1. The major inefficiency results when a disagreement pair must be classified. The
classifications are mostly based on the naturr of the head and in particular on whether it is a constant or not.
Furthermore, in the frequently occurring Rigid-Rigid case (where both heads are parameters or constants),
it is necessary to know which constant: the pair is only decomposed into argument pairs if the heads are
identical; otherwise unification fails. In the left-associative representation, obtaining information about the
head is too expensive. This suggests a representation as a pair of a functor and a list of arguments. This
representation, for the same example, is shown on the right in Figure 1. Notice that this representation also
makes it easier to make use of clause indexing on rigid term heads.

This Prolog-like functor/argument representation can be problematic when the head is a variable, since
it may be bound to an expression which requires some normalization, producing a new head, and the old
one needs to be stored for back-tracking in some way. These complications are outbalanced by the efficiency
improvement for the simple cases, since the overwhelming majority of)iProlog or Elf equality constraints
can be solved by Prolog unification. We conclude that functor/argument representation is an essential
optimization for a AProlog or Elf implementation. 2

In principle, an important part of term comparison in these languages is the test for a-convertibility.
The Duke representation proposal (19] suggests a de Bruijn representation [2] of terms for this reason. While
that suggestion may well be appropriate, the empirical study showed the comparison of two abstractions to
be a rare occurrence, and so this consideration alone should probably not be allowed to determine the choice
of term representation.

Similarly, the implementation of substitution is an important issue. The dominant kinds of substitutions
are those that replace bound variables by parameters-the representation should be optimized towards
handling this case efficiently. This is a much more difficult issue than the representation of application, but
our observations suggest that an explicit way to shift variable references in a term (through a special form
of environment) might solve the efficiency problem associated with parameter substitutions.

2SUCh & representation warn in fact, used pervasively in Nadathur's original implementation of AProlog up to LP2.7. In the
current Elf implementation, a functor/argument representation is used as an intermediate form in the constraint solver for the
reasons cited above.

224

5 Hard Constraints in HOLP
Even a brief examination of Elf and AProlog programs shows that syntactic restriction to LA would affect a
significant proportion of programs. While these programs can be rewritten to conform to the L, restriction,
doing so makes them harder to reason about and, with present implementation technology, significantly less
efficient. Furthermore, most programs dynamically conform to the L. restriction even without delay, and we
are aware of only one useful program that does not run properly when hard constraints are delayed [4]. On
the other hand, there are programs that run significantly more efficiently when hard constraints are delayed
(for example, type inference in the polymorphic A-calculus [21]).

The operational semantics of Elf, in contrast to AProlog, is based on solving all dynamically arising
equations that lie within an appropriate extension of Lx to dependent types. All other equations (solvable
or not) are delayed. We found that this addresses the problems with higher-order unification without
compromising programming methodology. The primary disadvantage of this approach is that one must take
care in interpreting the final answer, if it contains delayed constraints, as a conditional: each solution of the
remaining constraints yields a proof of the original query. In this section, we state precisely which constraints
are deemed to be hard in AProlog and Elf and how they arise, and show how the methodology described in
[101 can be used to manage hard constraints in this context.

5.1 Classification of Higher-Order Terms

In Prolog each term can be classified as either a variable, a constant, or a compound term. Solving constraints
over higher-order terms requires a finer classification. For example, a term might be a A-abstraction or a
ft-redex. The critical cases, however, arise when the head of a term is either a variable or a constant. In
our terminology, an Evar is an existential variable (logic variable, in Prolog terminology) and a Uvar is a
parameter (a constant with a well-defined scope introduced when solving a universally quantified goal). An
Evar E is said to depend on a Uvar x in a goal if E is introduced into the computation within the scope of z.
If E depends on z the substitution term for E may contain occurrences of z, otherwise it may not. Terms
are then classified as follows.

"* Gvar
Fzjz 2 ... z,,n >_ 0 where F is an Evar, the zi are Uvars, F does not depend on any zi. and the zi
are all distinct.

"* Flex
FMIM2 ... M,, n > 0 where F is an Evar and the MA are terms, and the Gvar conditions above are
not satisfied.

"* Rigid
fMIM2 ... M,, n > 0 where f is a constant or a Uvar and the Mi are arbitrary terms.

Note that, to simplify the discussion, types and other classes of disagreement pairs have been omitted,
since they are dealt with by straightforward recursive unifications. We should also emphasize that in this
discussion the Flex case does not include the Gvar case, unlike in Huet's usage.

5.2 Classification of Constraints

A HOLP system must solve the nine kinds of equations arising from these three kinds of terms, collapsing
to six kinds due to symmetry. The table in Figure 2 shows which pairs are directly solved and which are
delayed. Note that the disagreement pairs that are directly solved will either have a most general solution
or no solution.

The constraint solver state consists of a set of substitutions of the form X = M where X is an Evar and
M is a term, such that X does not occur elsewhere, and a set of Flex-Flex pairs. This is an implicit solved
form. In the implementation, the Evar-Term pairs are not represented as pairs, but by pointers from the
variable to its instantiation term (as in Prolog). However, Flex-Flex pairs must be represented explicitly. In
addition, the constraint solver must han,'le hard constraints, which arise in two ways:

225

Core Elf Unification TableSGvarT[Flex .Rgd

Gvar unify
Flex delay delay
Rigid unify delay unify

Figure 2: Core unification table for Elf

1. When a new disagreement pair is a Flex-Rigid pair (under the current substitution). This corresponds
to the typical source of hard constraints in languages like CLP(IZ).

2. When additional substitutions are added to the solver as a result of solving a new disagreement pair,
and these can be used to rewrite some Flex-Flex pair already in the solver to a pair that is a hard
constraint.

The second situation is unusual for constraint languages, since a conjunction of directly solvable con-
straints may be simplified into a hard constraint. However, this is not problematic in the context of the
methodology described in [10]: it merely requires that Flex-Flex pairs be treated as if they were hard
constraints when designing the wakeup system, as described below.

5.3 A Wakeup System

In this section, our aim is to describe the management of hard constraints in Elf in terms of the framework
developed by Jaffar et al. in [10].

We need five wakeup degrees in addition to awakened. These are for Flex-Flex, Flex-Rigid, Rigid-
Flex, Flex-Gvar, and Gvar-Flex. We note that it is not desirable to combine symmetric cases, because the
transitions of the two sides of the equation depend on the binding of different variables.

The transitions between these three forms of expressions that we need to consider are as follows. Note
that we do not consider leading abstractions.

1. Flex :* Rigid
The head F in FM 1 MI2 ... Mn is bound to

AI.. 'AZk. gN ".." Nm

where g is a constant or a Uvar and the Ni are arbitrary terms. The resulting Rigid term will be of
the form

gPi.-.-P1.
2. Gvar =: Rigid

Same as Flex =*. Rigid.

3. Flex z* Gvar

(a) All of the arguments are bound to universal variables, such that the Gvar criteria now hold. (This
is very unlikely, and expensive to check for, so it has not been implemented to date).

(b) The head F of FM 1 M2 ... M. is bound to

Axi .. - AZk. Gy, ... ym

where G is an existential variable, each yj is either a Uvar or one of the zi, and the resulting term
is a Gvar, that is, a term of the form

Gz1 ... zi

such that the zi are all distinct Uvars, and G does not depend on any of them.

226

4. Gvar =o Flex

The head F of F 1Z: 2 .- Z.. is bound to

AZ ... AZk. GNI-...N

where G is a an existential variable and the N, are terms, such that the Gvar criteria are now violated.
The resulting Flex term will be of the form

GPI... 1 .

Notice that the above transitions admit the possibility of cycles: A Flex term can turn into a Gvar
term when more information becomes available, and with still more information may turn back into a Flex
term, all without backtracking. This makes the wakeup system cyclic, as shown in Figure 3. The two arcs
shown using a thinner line correspond to the case that is expensive, unlikely, and omitted in the current
implementation. We describe the generic wakeup conditions in symmetric pairs, to avoid notational clutter,
and ignore the term that does not change in each pair.

6 Conclusion

Higher-Order Logic Programming languages differ substantially from other Constraint Logic Programming
languages. However, our empirical evidence shows that the language design and implementation strategies
that have made such a substantial difference to better known CLP languages are applicable here as well.

We believe that the main challenge in the design of an abstract machine and a compiler for HOLP
languages that achieves Prolog's efficiency on Prolog-like programs is the design of a representation that
permits efficient substitution of parameters for bound variables without incurring an undue overhead for the
usual first-order unification computation.

References

[1] Pascal Brisset and Olivier Ridoux. The architecture of an implementation of AProlog: Prolog/mali.
In D. Miller, editor, Proceedings of the Workshop on the AProlog Programming Language, pages 195-
200, Philadelphia, Pennsylvania, July 1992. University of Pennsylvania. Available as Technical Report
MS-CIS-92-86.

(2] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic formula
manipulation with application to the Church-Rosser theorem. Indag. Math., 34(5):381-392, 1972.

[3] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Programming Lan-
guage. PhD thesis, Department of Computer and Information Science, University of Pennsylvania, July
1989. Available as Technical Report MS-CIS-87-109.

[4] Juergen Haas and Bharat Jayaraman. Interactive synthesis of definite-clause grammars. In Krzystof
Apt, editor, Proc. Joint International Conference and Symposium on Logic Programming, pages 541-
555, Washington, DC, November 1992. MIT Press.

[5] John Hannan. Investigating a Proof-Theoretic Meta-Language for Functional Programs. PhD thesis,
University of Pennsylvania, January 1991. Available as technical report MS-CIS-91-09.

[6] John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov, editor, Seventh
Annual IEEE Symposium on Logic in Computer Science, pages 407-418, Santa Cruz, California, June
1992. IEEE Computer Society Press.

[7] Girard Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science, 1:27-57,
1975.

227

(G4. R-P, 0-R. R-G)

0) 0)0
15 1

0) 1

40)4

(J) 3 K
F- F4

F FM 1 M 2 ... M.
G Fzl2!2 ...in
R fMIM 2 ... M.

F ->R (w~iW2 W13, WI4, w5,w"'6) F = Al.,zk. gN1 . N,.
F->G (W5, WO I=x -)AM ,

A Gvar(Fxl.. z,,)
F ->G (We, W41 Wa119 W'12, W1 7, wj8~) F = Ax,..),zk. Gy, .. ym

A (Axl .. AXk. Gyl.. ym)MI MAf

A Gvar(M')
G R> (wg, wIG) F = Ax' ...Axk. gN . A',,,
G->F (W7, WS) F = Ax, --.Axz. GNI... N..

A (Axn.. AxL. GNI .. N,,)MI .. M,,M'Af
A -'Gvar(M')

Figure 3: Wakeup system for Elf

228

[8] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the 14th ACM
Symposium on Principles of Programming Languages (POPL), Munich, Germany, pages 111-119. ACM,
January 1987.

[9] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(I) language and
system. ACM Transactions on Programming Languages and Systems (TOPLAS), 14(3):339-395, July
1992.

[10] Joxan Jaffar, Spiro Michaylov, and Roland Yap. A methodology for managing hard constraints in CLP
systems. In Proceedings of the ACM S1GPLAN Symposium on Programming Language Design and
Implementation, pages 306-316, Toronto, Canada, June 1991.

[11] Keehang Kwon and Gopalan Nadathur. An instruction set for higher-order hereditary harrop formulas
(extended abstract). In D. Miller, editor, Proceedings of the Workshop on the XProlog Programming
Language, pages 195-200, Philadelphia, Pennsylvania, July 1992. University of Pennsylvania. Available
as Technical Report MS-CIS-92-86.

112] Spiro Michaylov. Design and Implementation of Practical Constraint Logic Programming Systems. PhD
thesis, School of Computer Science, Carnegie Mellon University, August 1992. Available as technical
report CMU-CS-92-168.

[13] Spiro Micheylov and Frank Pfenning. Natural semantics and some of its meta-theory in Elf. In L.-
H. Eriksson, L. Hallnas, and P. Schroeder-Heister, editors, Extensions of Logic Programming, pages
299-344, Stockholm, Sweden, January 1991. Springer-Verlag LNCS/LNAI 595.

[14] Spiro Michaylov and Frank Pfenning. An empirical study of the runtime behavior of higher-order logic
programs. In Proc. Workshop on the XProlog Programming Language, pages 257-271, Philadelphia, PA,
USA, July/August 1992. Appears as University of Pennsylvania technical report MS-CIS-92-86.

[15] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple un:-
fication. In Peter Schroeder-Heister, editor, Extensions of Logic Programming: International Workshop,
pages 253-281, Tuibingen FRG, December 1991. Springer-Verlag LNCS 475.

[16] Dale Miller. Unification of simply typed lambda-terms as logic programming. In K. Furukawa, editor,
Proceedings of the Eighth International Conference on Logic Programming, pages 255-269. MIT Press,
July 1991.

[17] Dale A. Miller and Gopalan Nadathur. Higher-order logic programming. In Ehud Shapiro, editor,
Proceedings of the Third International Conference on Logic Programming, pages 448-462, London, July
1986. Springer Verlag LNCS 225.

[18] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A. Kowalski and Kenneth A.
Bowen, editors, Logic Programming: Proceedings of the Fifth International Conference and Symposium,
Volume 1, pages 810-827, Seattle, WA, August 1988. MIT Press.

[19] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable for operations
on their intensions. In Proceedings of the 1990 Conference on Lisp and Functional Programming, pages
341-348, Nice, France, June 1990. ACM Press.

[20] Fernando C. N. Pereira. Semantic interpretation as higher-order deduction. In Proceedings of the Second
European Workshop on Logics and AI, pages 78-96. Springer-Verlag LNCS 478, September 1990.

[21] Frank Pfenning. Partial polymorphic type inference and higher-order unification. In Proceedings of
the 1988 ACM Conference on Lisp and Functional Programming, pages 153-163, Snowbird, Utah, July
1988. ACM Press.

[22] Frank Pfenning. Logic programming in the LF logical framework. In GErard Huet and Gordon Plotkin,
editors, Logical Frameworks, pages 149-181. Cambridge University Press, 1991.

[23] Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. In Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 74-85, Amsterdam, The Netherlands, July 1991.

229

Constraint Satisfaction,
Constraint Programming,

and
Concurrency

Ugo Montanari and Francesca Rossi

University of Pisa
Computer Science Department

Corso Italia 40, 56100 Pisa, Italy
{ugo,rossi}@di.unipi.it

Abstract
Recently constraint satisfaction has been embedded in various high-level declarative programming

environments, like the Constraint Logic Programming framework, and even more recently such environ-
ments have been extended with concurrency, like in the Concurrent Constraint Programming paradigm.
The merging of different areas of research is always an exciting event, and prolific of new ideas. We believe
that here it is particularly so, since the above areas, while apparently very far in aims and techniques,
are found more and more interconnected, to the point that their coexistence leads to new unexpected
directions of research. In fact, we believe that interesting results in constraint satisfaction and in con-
straint programming can be mixed with concurrency with the consequence that more concurrency, as
well as a more natural view of constraint programming, are derived.

1 Organization of the paper

In Section 2 we describe our general scheme for local consistency techniques for finite domain constraint
problems, together with a specific efficient instance of the scheme. Then in Section 3 we show how to embed
such an instance within the Constraint Logic Programming framework and we discuss its efficiency. In
Section 4 we define, in terms of graph rewriting, a concurrent abstract machine for Concurrent Constraint
programs, and we describe how to obtain a suitable semantics which is able to show all the concurrency and
the nondeterminism contained in a program. Moreover, we show how to exploit it to derive useful information
about the causal dependency of the objects involved in the computations, and we give an example of its
application to the automatic parallelization of CLP programs. Finally, we give some suggestions for further
research.

The presentation is rather informal. Due to the lack of space, we chose to convey the main motivations,
ideas, and results instead of writing the technical development. However, the formal details can be found in
(Ros93] and in the various papers cited throughout the text.

2 Constraint Satisfaction

Constraint satisfaction problems are very useful for describing many real-life problems, like scene labelling,
graph coloring, VLSI routing, hardware design, software specification and design, and operation research
problems. In particular, finite domain constraint problems are significantly easier to treat than general ones,
and nevertheless are sufficiently descriptive of many real situations. Therefore the growing interest in such
problems is widely justified.

A (finite domain) constraint problem can be specified by giving a set of variables and a set of constraints,
where each constraint connects only a subset of the variables and is defined by a set of tuples of domain

230

values. Note that the domains of the variables are not specified separately, but can just be seen as unary
constraints. Note also that a constraint may in general involve any number of variables (see for instance
[MR88]), not only one or two as in most of the literature ((Mon74, Mac77, MF85, Fre78, DP88)).

Then, the solution of a constraint problem is the set of all the assignments of values to some of the
variables which satisfy all the constraints. The reason why we depart from the usual definition of solution,
which involves all the variables instead of only some of them, is that we believe it is very reasonable to let the
user specify the objects in which he/she is interested, while being able to use many other objects to describe
a constraint problem in detail. This is also useful when a constraint problem has to be used by many users,
who may be interested to different sets of objects and do not want to know the admissible values for all the
other objects.

Given this syntactic description of a constraint problem, there may be many others which represent the
same problem. In particular, there may be others which are more compact, i.e. with less tuples. In fact,
some of the tuples describing a constraint could be incompatible with some other constraint, and therefore
could be eliminated from the syntax of the problem without changing its semantics (which is the set of all
its solutions). In this sense, such tuples are redundant.

Assuming that a constraint problem is being solved by some form of a backtracking procedure, the
removal of redundant tuples is particularly interesting, since it could cancel some failing branches from the
search tree and thus improve the overall behavior of the search. To decide whether a tuple is redundant, it
often (not always!) suffices to look only at a small portion of the problem.

Many algorithms have been developed to remove redundant tuples. They all have the same aim, but
they differ in their power, i.e. in the amount of redundant tuples they are able to remove. In this line
we find, in order of increasing power, the arc-consistency algorithm ([Mac77, MF85]), the path-consistency
algorithm (described for the first time in a pioneering paper by one of the authors [Mon74]), the k-consistency
framework ([Fre78]), and the adaptive-consistency algorithm ([DP88]). A survey containing a description
of most of them can be found in [Kum9l]. All such algorithms, usually called local consistency algorithms
because they work at a local level, have a polynomial complexity, but are complete (i.e., they remove all the
redundant tuples) only when applied to specific classes of problems ([Fre88]). When they are complete, the
resulting backtracking search never backtracks, or has a bounded amount of backtracking.

2.1 A general scheme

Even though most the local consistency algorithms have been developed quite separately and without a
common notation nor a uniform way of specifying their properties, it is possible to recognize that they are
quite similar at the core, in that they all try to remove redundancy at some local level. Based on this
observation, we have developed a general scheme which embeds all the previously proposed local consistency
algorithms, as well as some new ones, as specific instances ([MR91a]).

In general, the significance of a scheme lies in the fact that all the properties which hold for the scheme
are automatically inherited by all its instances. In our case, this was extremely true and convenient, since
there were properties which had never been stated formally before for the single algorithms. In fact, while
termination of a local consistency algorithm has always been one of the concerns, and therefore it is possible
to find several proofs of such property in the various papers introducing new algorithms, the fact that the
resulting constraint problem is unique has always been treated very informally. Instead, in our scheme both
these properties have a formal proof, which may then be inherited by all the algorithms.

In the scheme, each concrete algorithm is specified once a specific set of basic operators, and a strategy
for their application, is chosen. Each of these basic operators is very simple, and involves just the analysis
of a subproblem of small size and the removal of some of its redundant tuples. An algorithm consists then
of the application of such operators, in the order given by the strategy, until stability is reached (i.e., until
no more tuples can be removed by any of the operators). Note that in general an operator may have to
be applied more than once before stability is reached, since the application of another operator may make
some more tuples in the subproblem associated to the first one to be recognized as redundant only at a later
application.

For example, arc-consistency (resp., path-consistency, k-consistency) can be achieved by choosing, as
the set of basic operators, all the subproblems spanned by any two (resp., three, k) variables. Note, however,
that the scheme is more general, since there is no requirement that all the operators represent subproblems

231

of the same size.
If we consider the partial order consisting of all the constraint problems equivalent to the given one but

with possibly less tuples, ordered by tuple set inclusion, then each basic operator is just a closure operator
(i.e., an extensive, monotone, and idempotent function) over such partial order, and thus a local consistency
algorithm is simply the application of all these closure operators until quiescence. This observation will turn
out to be very important when considering possible linguistic supports for specifying constraint problems
and local consistency algorithms, since an adequate support would be one where closure operators are first
class objects,

2.2 A Specific Instance: Perfect Relaxation

As noted above, most of the local consistency algorithms developed in the past seem to have the recurring
property that all the considered subproblems (where redundancy has to be removed) have the same size
(for one algorithm). An exception is the adaptive-consistency algorithm ([DP88]). This is obviously an
unreasonable restriction, which may prevent the development of new and convenient algorithms. In our
scheme, there is no such restriction about the basic operators, which may be very different in size.

An example of a new algorithm which is an instance of the scheme but which may involve very different
basic operators is called perfect relaxation ((MR86, RM89]). The main feature of such algorithm is that it
is always complete, and that it uses each of the basic operators exactly once. Moreover, it is very efficient
when applied to particular classes of constraint problems. Informally, such problems can be described as
consisting of a set of small subproblems loosely connected among them in a tree-like shape. For such classes,
perfect relaxation is linear in the size of the solved problem.

More precisely, consider a finite set I of finite domain constraint problems, and consider the class of all
those problems which can be built by putting together the problems in I in a tree-like shape. This class is
called I-structured. Perfect relaxation is able to solve efficiently any problem in an I-structured class. Since
such problem consists of a tree of subproblems belonging to I, the idea is to solve each subproblem in the tree
in a bottom-up fashion, from the leaves to the root. In terms of the local consistency scheme, this amounts
to having the subproblems in I as basic operators, and the bottom-up traversal as the strategy.

It is possible to show that this bottom-up procedure obtains the complete solution of the problem. Since
the subproblems have bounded size (it is bounded once the set I is given), the whole solution process involves
as many steps as the subproblems, which can be thought as in number linear with the size of the problem
(each step may be exponential in the size of a subproblem and thus is a constant since such size is bounded).
Therefore the whole complexity is linear in the size of the problem to be solved.

However, and not surprisingly, not all classes of problems can be recast as I-structured classes. For
example, there is no I such that the class of rectangular lattices is I-structured.

3 Constraint Satisfaction in CLP

A lot of effort is currently being put into the task of embedding constraint satisfaction facilities within high
level programming languages. In doing so, the aims are many: to be able to treat mote complex constraint
problems, specifying them in a hierarchical or even recursive way, to combine different algorithms and/or
constraint domains, to parametrize constraint solving, to incrementally generate constraint problems, and
even to exploit constraints in tasks which have never been considered before, like the exchange of partial
information between concurrent program agents.

In particular, one of the most recent languages which are based on constraints is the Constraint Logic
Programming (CLP) scheme (fJL87]). It is an extension of logic programming ([Llo87I) where term equalities
are replaced by arbitrary constraints and unification by an arbitrary constraint solving algorithm. It is a
scheme because it is parametric w.r.t. an underlying constraint system, which is a collection of algorithms
to handle and solve a specific class of constraints.

The naive approach to the construction of an instance of the CLP scheme, i.e., a specific CLP language,
consisting of the choice of a specific class of constraints, and of the embedding of any efficient algorithm
for such class within CLP, can be sometimes reasonably satisfactory. However, issues of incrementality (i.e.,
the ability of exploiting the knowledge that the previous set of constraints is solvable in order to not repeat

232

the work done in previous steps) and canonicality (i.e., the existence of a canonical form for each constraint
set, which is compact and easy to use) have always to be considered. But most of all, such naive approach
does not exploit one of the fundamental features of CLP, which consists of the monotonic accumulation of
constraints, performed by the addition of a small constraint set at each computation step.

Perfect relaxation can instead take advantage of such feature in order to check efficiently the satisfi-
ability of the accumulated constraints ([MR9lc, MR92b, MR91b]). In fact, consider the instance of the
CLP framework over finite domain constraints, called CLP(FD). Then, each computation step in CLP(FD)
involves the expansion of a selected subgoal in the current goal via a program clause, together with the
consistency check of a set of constraints (those already in the goal plus those in the program clause). Now,
the important observation is that this set of constraints can always be seen as an I-structured problem. In
fact, we can think of the constraints added at each computation step as the problems of the set I. Moreover,
due to the way computation steps are performed (mainly, by letting the current goal and the newly added
goals and constraints to interact only via the clause head), we never obtain a cyclic structure, but always a
tree whose nodes are the constraints added at each step. This means that perfect relaxation can be used to
perform the consistency check required at each derivation step.

Let us now consider the complexity of such use of perfect relaxation. If the constraint set has been
obtained via n computation steps, then perfect relaxation needs n steps as well, and each of such steps is
exponential in the size of the constraint subproblem added at the corresponding computation step. Therefore,
by the properties of perfect relaxation, if such size is bounded, then perfect relaxation is linear in the size of
the whole set of constraints.

Unfortunately, given a CLP(FD) program, it is not possible in general to find a bound to the size of
such set I of the possible constraint sets added at a derivation step in any of the possible executions of the
program. This derives from the fact that in general a CLP(FD) program, although dealing only with finite
domain constraints, may contain some data constructors in those atoms which are not constraints. In fact,
any CLP instance is always able to handle term unification, no matter which constraint domain is supposed
to deal with. In some sense, we may say that a CLP language has two different constraint solvers, one of
which is always the unification of Herbrand terms.

The presence of terms in program clauses, for instance of lists, makes it impossible in general to derive
a constant bound to the size of the constraints which are going to be added at a derivation step, since the
number of variables potentially involved may arbitrarily grow in a computation. However, there are special
cases when this cannot happen. The simplest of them is the case where CLP(FD) coincides with Datalog,
which means that no data constructor is present. More interesting and general cases, where functions are
"allowed but restrictions are posed on the structure of the clauses and/or of the goals, can be studied, for
example via abstract interpretation of the CLP(FD) programs, and suitably characterized.

It is important to notice that, while for many algorithms it may be difficult to produce an incremental
version, for perfect relaxation it is very easy and convenient. In fact, the set of constraints added in the
current derivation step is always a leaf of the tree structure. Therefore the algorithm. which is, we recall,
just a bottom-up traversal of the tree, may simply start its traversal from this leaf, and then continue in
the path from such leaf to the root, until no change is made in one of the steps (i.e., no redundant tuple is
removed). Therefore, while the solution of an entire constraint problem from scratch needs the traversal of
the whole tree, the fact that in CLP constraints are generated incrementally makes perfect relaxation even
more efficient, since each derivation step requires only the traversal of at most a path from one leaf to the
root. For balances trees, the complexity is thus logaritmic in the size of the tree and of the whole constraint
set.

4 From CLP to CCP: a Concurrent Abstract Machine for CCP
In the CLP framework, the underlying constraint solver is treated as a black box, which cannot be changed
or even looked at by the user. Moreover, the user cannot extend such constraint handler at the program
level, because the language does not provide the necessary operations on constraints which are usually used
by the constraint solution algorithms.

Although first steps towards the extension of CLP via user-written parts of the underlying constraint
handler have been recently proposed ([Fru92]), there is already a language framework which seems to have the

233

desired flexibility which is instead lacking in CLP. It is the concurrent constraint (cc) programming framework
([Sar89, SR90a]), which can be thought of as CLP plus concurrency. More precisely, a cc program consists
of a set of concurrent agents which share a set of variables that are subject to some constraints. Each agent
may then either add (tell) a new constraint to the current set of constraints, or check (ask) whether a new
constraint is logically entailed by the current constraint set, or split into more agents. As CLP, also the cc
iramework is parametric w.r.t. the underlying constraint system, which can be described in a simple way
as a set of primitive constraints (tokens) plus an entailment relation relating tokens to tokens, and stating
when a token is entailed by some other tokens. Starting from an initial constraint and an initial agent (which
is in some sense a query), the computation evolves through a monotonic accumulation of constraints until
quiescence, at which point the current set of constraints is the answer to the initial query.

It is important to notice that the ask operation is intimately connected to the presence of a concurrent
model of computation. In fact, an agent asking a certain constraint may be suspended (if that constraint
is not entailed by the current constraint set but it is consistent with it), waiting for another agent to add
enough information (i.e., constraints) so that that constraint become either entailed or inconsistent.

4.1 Local consistency in CCP
In our view, one of the most important aspects of the entailment operation is that most constraint solution
(or local consistency) algorithms are based exactly on such two operations: consistency and entailment, as a
consequence, these algorithms can be easily specified as cc programs. This can be checked also by considering
that any cc agent can be assimilated to a closure operator ([SR90b]), just like the basic operators of the
constraint solution algorithms (as noted above). More informally, it is enough to see that each basic operator
of a local consistency algorithm can be cast as a cc agent which asks whether a certain tuple is entailed by
the other constraints of the subproblem (which means that it is consistent with them), and, if so, then tells
it as a new constraint.

Among the local consistency algorithms, perfect relaxation is here able to exploit more effectively, as
it is in CLP, the irm:emental nature of constraint accumulation in the cc framework. In fact, both the tell
operation, which requires to test whether the told constraint is consistent with the current constraint set
(and therefore it is assimilable to a derivation step in CLP), and the ask operation. which requires the test
for entailment, can efficiently and naturally be performed via perfect relaxation. The coexistence of these
two operations, which are so intimately connected to each other, allows to reduce even more the complexity
of each application of the perfect relaxation algorithm. In fact, the knowledge obtained from performing one
of such operations could be maintained in suitable data structures and used to speed up the performing of
the other operation.

This uniformity of basic local consistency operators and cc agents means that the user can naturally
"extend the underlying built-in constraint solver by simply writing an additional piece of program. In other
words, in the cc framework program agents and constraints are homogeneous, both from a static and form
a dynamic point of view, and this makes such a framework very natural and flexible in terms of constraint
programming.

4.2 The abstract machine
We have developed an abstract machine for cc programs, based on graphs and graph rewriting rules, which
is able to express such homogeneity in a natural way, and also to exploit it for a better understanding of
the level of concurrency implicitly contained in cc programs ([MR91d, MR92c]). One of the main features of
such machine is that it is concurrent, while most of the computation models used for describing the dynamic
behavior of cc programs are instead sequential and thus reduce concurrency to nondeterminism (that is, they
cannot distinguish between computation steps which can happen in any order but not simultaneously and
computation steps which can happen in any order and also simultaneously).

At any given point, a cc computation state consists of the active agents and of the constraints already
generated (i.e., the current store). Our idea is to represent such a state via a graph, where nodes represent
program variables, and arcs represent either agents or primitive constraints. In this way, each agent or
primitive constraint is connected to the variables it involves, and they are uniformly represented. This

234

uniform representation of agents and constraints seem very reasonable to us, since agents can be simply seen
as user-defined constraints.

Then, each computation step involves either the evolution of an agent, which can perform one of the
allowed operations (ask, tell, ...), or the evolution of some set of primitive constraints, which can cause the
addition of a new constraint to the store if such new constraint is entailed by them, as specified by the
entailment relation. All such operations can be uniformly described as the application of a graph rewrite
rule to the graph representing the current state.

Thus, our abstract machine has graphs as states and applications of graph rewrite rules as transitions.
However, an algebraic description of this machine, based on term rewriting modulo certain structural axioms
representing graphs, is also possible ([CMR92a, CMR92b]).

Note that the interpretation of each pair, say c I- d, of the entailment relation I-, as the addition of
constraint d to the store whenever c is already in the store, has three consequences. First, the constraint
system is not seen as a black box which can passively answer consistency or entailment tests, but as an active
entity of the computation environment, which is more realistic if one wants to model the entire environment
and not only a part of it. Second, it has a completely distributed representation. This gives to our machine
a degree of concurrency higher than usual. In fact, it increases the concurrency: i) within the constraint
system; ii) between the constraint system and the agents; and iii) within the agents. Third, the ask operation
is reduced to testing the presence of certain constraints in the current store (instead of their entailment).

Note again that this machine is inherently concurrent, since different rewrite rules can be applied in
parallel provided that no conflict situations actually occur.

Informally, a graph rewrite rule is a local operation which, given a graph, deletes some of its items
(nodes and/or arcs, or, in other words, a subgraph), generates new items, and tests other items for presence.
This third set of items (those that are tested for presence) can be thought of as a contezt. In fact, they are
not affected by the application of the rewrite rule, but they are needed for such application to take place.

The use of a context-dependent rewriting formalism is particularly important in describing the cc frame-
work, since it allows for a convenient and correct representation of the asked constraints. In fact, when an
agent checks the entailment of a constraint (i.e., it performs an ask operation), such constraint is not affected
by the operation, but it is nevertheless needed in order for the operation to succeed.

Moreover, the fact that asked constraints are not affected by the ask operation, and the ability of formally
describing this situation, has a very convenient consequence in terms of concurrency. In fact, different agents
which ask for the same constraint may evolve in parallel without any conflict. This possibility is elegantly
modelled in the algebraic framework for graph grammars ([Ehr78)). where different graph rewrite rules which
have the same context may be applied in parallel.

Therefore our machine is able to gain concurrency from several directions: from the fact that no sequen-
tialization of graph rewrite rules is ever assumed, from the uniform representation of agents and constraints
and a non-monolithic view of the constraint system, and from the context-dependent nature of graph rewrite
rules.

This conceptual graph-based abstract machine for cc programming has been the basis for a more general
abstract machine for distributed systems called CHARM ([CMR92a, CMR92b]), which has been given an
algebraic description and has been shown to be able to implement graph grammars, Petri nets, and cc
programs. The CHARM is also related to the CHAM machine ([BB90]), which has simpler structural axioms,
and which does not exhibit the same convenient treatment of context items and of shared variables. In some
sense we can say that, while the CHAM machine models multiset rewriting via the chemical metaphor, the
CHARM machine models term (and graph) rewriting via the graph metaphor.

4.3 The partial order semantics

Given a computation of a cc program, which is represented by a sequence of applications of graph rewrite
rules, it is possible to derive a partial order among the computation steps which reflects the existing concur-
rency ([MR92c]). In fact, elements of the partial order which are not related by the partial order relation
are concurrent and can therefore evolve in any order or even simultaneously. Note that such partial order
represents not only the given computation. but also all those computations which differ from it for the order
of some concurrent steps.

235

However, given two cc computations, they may be represented by two different partial orders, since they
may differ not only for the order of some concurrent steps but also (or alternatively) for the presence or the
absence of some steps. This means that such two computations derive from different choices at the various
nondeterministic choice points the program may have. Therefore, in general, a cc program is represented by
a set of partial orders.

This partial-order based semantics for cc programs allows us to study and possibly exploit the concur-
rency in each computation, but it is not able to show where the nondeterminism occurs. In fact, different
partial orders have nothing in common, even though the corresponding computation classes where just dif-
fering for few steps because of a different nondeterministic choice. Therefore we extended the partial order
approach and we developed a new semantics, which consists of a structure whose elements are all the steps
and the items (tokens and agents) in all the computations, and where three relations are defined among
these objects: dependency, concurrency, and mutual exclusion. In this way, all the partial orders are still
recoverable (as those substructures where no two elements are mutually exclusive), and in addition it is
possible to see how such partial orders interact due to the nondeterminism. In other words, both AND and
OR parallelism is formally described and made explicit. Two versions of such semantics have been developed,
one ([MR92a]) using the so-called event structures, and another one using an extension of Petri nets with
context conditions, called contextual nets ([MR93]).

The causal dependency information expressed by such partial orders (or by the structure containing
them) could be conveniently used in all those tasks which would gain from a formal and faithful representation
of such knowledge. In particular, we have used our semantics to help an optimizer trying to automatically
parallelize CLP programs. The aim is to run in parallel as many goals as possible while not losing efficiency
nor answers. The idea is to view a CLP program as a cc program (as if everything could run in parallel),
and to obtain the corresponding semantic structure. Then, to add in this structure some dependency links
which reflect the left-to-right order in which goals are written in the clauses. At this point, all that is still
concurrent can safely be run in parallel. With these technique, we are able to define a new notion of goal
independence which is more relaxed than all the existing ones, and which thus allows more goals to be
recognized as independent.

We are confident that this same technique, or a very similar one, could be used for a source to source
transformation of cc programs, for the transformation of CLP programs into cc programs, for the derivation
of an optimal sequential scheduling for cc programs, as well as for intelligent backtracking schemes.

Our semantics can still be improved. In fact, it can only represent one kind of nondeterminism (either
don't care or don't know), but not both of them together. This means that for now it can be used only for
languages like CLP which only employ don't know nondeterminism, or like the concurrent logic languages
and the committed-choice fragment of the cc languages, which employ only don't care nondeterminism.
Instead, the cc languages may have both kinds of nondeterminism (and even more complex constructs, like
AKL). However we are confident that by adopting suitable variations our semantics can be extended to
handle this more general situation. Moreover, our semantic structures are very concrete. That is, any two
cc programs which are syntactically different originate different structures, even though they are trivially
equivalent in term of their dependency pattern. Therefore we would like to define a suitable equivalence
relation among structures which would make our semantics more abstract while still retaining all its useful
knowledge.

References
[BB90] G. Berry and G. Boudol. The Chemical Abstract Machine. In Proc. POPL90. ACM, 1990.

[CMR92a] A. Corradini, U. Montanari, and F. Rossi. Charm: Concurrency and hiding in an abstract
rewriting machine. In Proc. Fifth Generation Computer Systems 1992, 1992.

[CMR92b] A. Corradini, U. Montaari, and F. Rossi. A concurrent abstract machine for distributed systems:
Charm. Theoretical Computer Science, 1992. To appear.

[DP88] R. Dechter and J. Pearl. Network-Based Heuristics for Constraint-Satisfaction Problems. In
Kanal and Kumar, editors, Search in Artificial Intelligence. Springer-Verlag, 1988.

236

[Ehr78] H, Ehrig. Introduction to the algebraic theory of graph grammars. In Proc. International Work-

shop on Graph Grammars. Springer Verlag, LNCS 73, 1978.

[Fre78] E. Freuder. Synthesizing constraint expressions. Communication of the ACM, 21(11), 1978.

[Fre88] E. Freuder. Backtrack-free and backtrack-bounded search. In Kanal and Kumar, editors, Search
in Artificial Intelligence. Springer-Verlag, 1988.

(Fru92] Thom Fruhwirth. Constraint simplification rules. Technical report, ECRC, Munich, Germany,
1992.

PL87] J. Jaffar and J.L. Lassez. Constraint logic programming. In Proc. POPL. ACM, 1987.

[Kum91] V. Kumar. Algorithms for constraint satisfaction problems: a survey. Technical Report 91-28,
University of Minnesota, 1991.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

[Mac77] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1), 1977.

[MF85] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network consistency
algorithms for constraint satisfaction problems. Artificial Intelligence, 25, 1985.

[Mon74] U. Montanari. Networks of constraints: Fundamental properties and application to picture pro-
cessing. Information Science, 7, 1974.

[MR86] U. Montanari and F. Rossi. An efficient algorithm for the solution of hierachical networks of con-
straints. In Proc. International Workshop on Graph Grammars and their application to Computer
Science, LNCS 291. Springer Verlag, 1986.

[MR88] U. Montanari and F. Rossi. Fundamental Properties of Networks of Constraints: A New For-
mulation. In: L. Kanal and V. Kumar, Eds., Search in Artificial Intelligence, Springer Series in
Symbolic Computation, pp. 426-449, 1988.

[MR91a) U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artificial Intelligence Journal,
48:143-170, 1991.

[MR91b] U. Montanari and F. Rossi. Finite domain constraint problems and their relationship with logic
programming. In C.W. Holsapple and A. Winston. editors, Recent Developments in Decision
Support Systems. Springer-Verlag, 1991.

[MR91c] U. Montanari and F. Rossi. Perfect relaxation in constraint logic programming. In Proc. Inter-
national Conference on Logic Programming. MIT Press, 1991.

[MR91d] U. Montanari and F. Rossi. True concurrency in concurrent constraint programming. In Proc.
ILPS91. MIT Press, 1991.

[MR92aI U. Montanari and F. Rossi. An event structure semantics for concurrent constraint programming.
Submitted for publication, 1992.

[MR92b] U. Montanari and F. Rossi. Finite domain constraint solving and constraint logic programming.
In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming: Selected Research.
MIT Press, 1992.

[MR92c] U. Montanari and F. Rossi. Graph rewriting for a partial ordering semantics of concurrent
constraint programming. Theoretical Computer Science, 1992. special issue on graph grammars,
Courcelle B. and Rozenberg eds.

[MR93] U. Montanari and F. Rossi. Contextual nets. Technical report, University of Pisa, CD Depart-
ment, TR 93-4, 1993.

237

[RM89] F. Rossi and U. Montanari. Exact solution of networks of constraints using perfect relaxation.
In Proc. International Conference on Knowledge Representation. Morgan Kaufmann, 1989.

(Ros93] F. Rossi. Constraints and Concurrency. PhD thesis, University of Pisa, 1993. Technical Report
TD 14/93.

[Sar89] V. A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-Mellon
University, 1989. To appear by MIT Press, 1989 ACM dissertation award.

(SR90a] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. POPL. ACM,
1990.

(SR90b] V. A. Saraswat and M. Rinard. Determinate constraint programming. Technical report, Xerox
Palo Alto Research Center, 1990.

238

Programming in CLP(BNR)

William J. Older Fr6d6ric Benhamou
Bell Northern Research Groupe Intelligence Artificielle

Computing Research Laboratory Facult6 des Sciences de Luminy
PO Box 3511, Station C case 901,163, avenue de Luminy

K1Y 4H7 Ottawa, Ontario, Canada 13288 Marseille Cedex 9 France
benham(gia.univ-mrs.fr

Abstract

CLP(BNR) is a constraint system based on relational interval arithmetic and forms part of BNR
Prolog /v.4. This is a much more powerful system than previous versions and allows a much wider
class of problems to be handled, including discrete domain problems and boolean equations. It is also
integrated more closely into Prolog, thus providing for smoother and more flexible interaction between
Prolog and the constraint system. This paper describes the programming interface and gives some simple
programming examples.

1 Introduction

The problems of providing a logical form of arithmetic for use in Prolog are well-known. The difficulties
of doing correct computations with floating point are also well-known. One mechanism for overcoming
both of these problems - applying a Prolog-like narrowing mechanism to intervals - was first suggested
by Cleary [Cleary 1987]. These ideas were first fully implemented at Bell-Northern Research (BNR) in
BNR Prolog in 1987 [BNR Prolog 1988] and have been successfully applied to problems far more com-
plex than those described in [Cleary 1987]. Although similar in intent, Cleary's mechanism differs sub-
stantially from other constraint logic programming languages such as CLP(R) [Jaffar and Michaylov 1987]
and Prolog-lll [Colmerauer 1990] in that it is not based on term-rewriting or symbolic equation solving
techniques. In many respects the interval constraint system of BNR Prolog most closely resembles CHIP
[Dincbas, Simonis and Van Hentenryck 1990] in so far as it is based primarily on local propagation tech-
niques, and the system described by Hyvonen in [Hyvonen 89] which also handles continuous quantities.

A general description of the technique of relational interval arithmetic and its abstract semantics is
given in [Older and Vellino 1993]. Briefly, the description of the problem given by the user is compiled into
a constraint network whose nodes are instances of the primitive relations supported by the system. The
variables of the problem are associated with a set (regarded as a state) determined by their upper and
lower bounds; the states are partially ordered by set inclusion. The constraint network then defines an
operator on states which is monotone and contracting with respect to the partial order on states, and which
is also idempotent and correct, Correctness here means that no valid solution (e.g., in the theoretical real
numbers) is ever eliminated during contraction; as a consequence of correctness the separation of multiple
solutions must involve a mechanism such as backtracking or or-parallelism. This technique, since it works
by removing non-solutions, can be regarded as a model elimination proof procedure, and this gives it quite
different charateristics from constructivist exact arithmetic systems.

As shown in [Benhamou and Older 19921, a major advantage of this approach is that it provides a
uniform treatment of a wide range of problems usually treated by very different methods. CLP(BNR)
currently deals with boolean variables, the natural numbers, and the reals, and supports a large number of
primitive relations. Because they share the same fundamental framework, it is possible to mix all three types
of variables in a single problem. In the reals, it can deal with general non-linear functions, transcendental
functions, and non-continuous functions on the same footing.

239

Because the underlying representation is based on intervals, this technique can also deal directly with
the low-precision data and tolerance limits characteristic of most real-world applications. It is also for this
reason an ideal tool for doing sensitivity analysis on complex models.

This paper is concerned solely with describing the user's view (and programming model) of CLP(BNR)
by means of examples.

2 CLP(BNR)

CLP(BNR) is a sublanguage of BNR-Prolog for dealing with relations over the booleans, naturals, and reals.
Because it is a separate sub-language, with its own notion of equality (==), it does not alter the usual
syntactic meaning of Prolog unification (=). The two systems are closely coupled: both are relational, they
share the notion of failure and backtracking, and bindings made by either system are visible in both. Prolog
serves as a meta-language for CLP(BNR); in particular, since programming can be done in Prolog there is
no need for programming constructs in CLP(BNR) proper.

The variables which are shared between the two systems are called intervals. An interval is a logic
variable which has been constrained to only take numeric values (either integer or real) and is possibly
further constrained to lie in a (closed) interval of the real line with (floating-point expressible) bounds. An
interval can be created using syntax of the form:

V:ra&1(LB,UB) V:integer(LB,UB) V:boolean

where LB and UB are either expressions which evaluate to numeric values or they are unbound variables,
representing +oo. Arithmetic relations on intervals, i.e., constraints, will either fail (in the usual Prolog
sense), or will succeed, in which case the bounds of the intervals may have been changed (narrowed).

The following simple queries should give some feel for the CLP(BNR) system. (CLP(BNR) generally
employs familiar syntax for arithmetic relations and functions, but details can be found in the Appendix.)

Establishing a constraint propagates information from the known to the less known

?- X:real(1,3), Y**2==X.
==> X : real(l.0, 3.0),

Y real(-1.73205080766888, 1.73205080756888)

Here is the same relat-on with both integer arguments; note that X becomes bound:

?- X:integer(1,3), Y:integer, Y**2==X.
> X 1

Y integer(-I, 1)

If Y is constrained to be positive, then Y also becomes bound to its unique answer:

?-X:integer(l,3), Y:integer, Y**2==X, Y>o.
==> X I

Y: I

Similar rules apply to general boolean relations:

?- B:boolean, I == B and (C or -D)
==> B 1

C boolean
D boolean

?- B:boolean, I == B and (C or -D), 0 == B and C
==> B : I

C: 0

In some cases where an equation has a unique solution, equation solving is automatic:

240

?- [X,Y]:real, 1 - X + 2*Y, Y - 3*X == 0. %, pair of linear eqns.
X : real(0.142857142857143, 0.142857142857143)

Y real(0.428571428571429, 0.428571428571429)

Here is a more interesting example, but with non-linear (including transcendental) equation s,•lving

?- [X,YJ:real,X>0O,Y>=O, tan(X) == Y, X**2+Y**2 - 5.
-- I> real(1.09666812870547, 1.09666812870547)

Y real(1.94867108960995, 1.94867108960995)

Note that although the upper and lower bounds in these answers print the same at this printing precision,
the internal binary forms must differ by at least one bit in the last place, or else the variables would have
been bound to the exact answer.

For more complex problems, which may have multiple solutions, there is a "solve" predicate which
separates the solutions (by backtracking) and forces convergence. For example, for polynomial root finding:

?- X:real(O,1i, 0z= 35*X**256 - 14*X**17 + X, solve(X).
=:> X 0.0 % 1st Sol.

==> X real(O.847943660827315, 0.847943660827315) % 2nd sol.

==> X real(O.995842494200498, 0.995842494200498) % last sol.

Similarly, for a pair of simultaneous non-linear equations :

?- [X,Y]:real, X**3 + Y**3 ==2*X*Y, X**2+Y**2==1, X>=O, solve(X).
==> X : real(0.391018886096038, 0.391085781049752)
Y : real(-0.920382654506382, -0.92035423172858)

==> X real(O.449060394395367, 0.450226789190836)
Y real(O.892914239048135, 0.893501405810577)

==> X real(O.892906985142645, 0.893513338815017)
Y real(O.449036650353057, 0.450241175242194)

These examples have all been pure CLP(BNR) problems. The next few examples use a mixture of Prolog
and CLP(BNR), although they can, if one chooses, equally well be regarded as programming in CLP(BNR).

3 Scheduling

The following example of a critical path algorithm computes a minimal completion time for a collection
of activities with precedence relations'. First we create a "language" for describing precedence relations
between activities:

op(700, xfx, before). % the precedes relation

activity(Name, Duration, task(Iame,Start, Finish))
[Start, Finish) : real,

Finish == Start + Duration.

task(_,_,Finish) before task(_,Start,_):- Finish =< Start.

A particular scheduling problem can then be easily formulated, e.g.:
Note this is scheduling over the Reals.

241

project(Start, Finish, [A,BC,D,E,F,G)):-
activity(a,iO,A), Start before A,

activity(b,20,B), Start before B,
activity(c,30,C), Start before C,
activity(d,18,D), A before D, B before D,
activity(e, 8,E), B before E, C before E,
activity(f,3,F), D before F,
activity(g,4,G), F before G,
G before Finish.

The actual computation of the shortest completion time and the start and finish windows for each task
is then done by:

?- activity(start,O,S), activity(end,O,E), project(S,EList),
lower-bound(E).

3.1 Disjunctive Scheduling (Resource Limits)

Boolean constraints in BNR Prolog can be used not just for expressing pure boolean constraint problems (e.g.
digital circuits), but are also useful in mixed computations, such as for disjunctive scheduling problems. For
example, suppose that S is the start and D the duration of the task T. Now suppose that T1 and T2 (beginning
at Si, S2 and of duration D1, D2 respectively), which are subject to precedence constraints, share the same
resource and cannot execute concurrently (i.e. must be scheduled disjunctively). This constraint could be
expressed by the formula:

(Si + DI =< B2) xor (B2 + D2 =< BI) == I

where the xor constraint expresses the fact that the constraints are exclusive.
This way of expressing the problem provides an efficient alternative to the standard Prolog way of

expressing disjunctive constraints by introducing a choicepoint. It can be applied effectively to solve
scheduling problems with mutually exclusive resource allocation such as the bridge problem described in
[Van Hentenryck 1989]. The CLP(BNR) program for this problem, which involves forty-six tasks and more
than six hundred constraints, is described in detail in the appendix to [Benhamou and Older 1992].

4 Magic Series

Mixed boolean and integer constraints can be used to solve puzzles like the magic series [Colmerauer 1990,
Van Hentenryck 1989]. The problem here is to find a sequence of non-negative integers (X0 . such
that, for every i in {f ..., n - 1), xi is the number of occurences of the integer i in the sequence. In other
words, for every i E 10, ... ,1n-)

n-i
xtl = E(z) =i)

j=0

where the value of (x = y) is 1 if (x = y) is true and 0 if (z $ y) is true. Moreover, it can be shown that the
two following properties are true.

n-I n-1

xi= n, E ixi = 11

i=0 i=O

The BNR Prolog program that expresses these constraints is as follows:

magic(N,L.) :-
length(L,N),
L : integral(O,_),
constraints(L,L,0,N,N),

242

firstfail(L).

constraints(L, 0.3,0,0).
constraints(L,[IJXsJ,I,S,S2)

sum(L.IX),

1 is I + 1,
constraints(LXs,3J,SiS3),
S=au + Si,
S2 a= X* I + S3.
Su(0 .,I0).

sum([Xlxs],I,S)
suM(Iu, ISI),
S== (X == I) + S1.

Thus the query that computes the magic series of length 4 produces the following results:

- nagic(4,L)
-agic(4, [1, 2, 1, 0)). ;

?-magic(4, [2, 0, 2, 0)). ;

5 Non-Linear Continuous Constraints

This example is adapted from (Hong 1993] and serves to illustrate the application of interval arithmetic to
continuous non-linear problems. (This case is equivalent to a pair of fourth degree polynomial inequalities.)
This problem involves hitting a bird of known size and trajectory with a stone which has a fixed initial
velocity and can only be launched at certain discrete instants. The problem is then to choose which instant
and what elevation to use. The problem illustrates the logical nature of interval arithmetic, which makes it
very natural in the context of Prolog.

The bird is modeled as a horizontal line segment of length L. The point (XO,Yo) is the bird initially
and is located at (0,H).

bird_init(XO,YO,,L):- XO>=0,X0f<L, Y=fi.

The bird moves horizontally to the right with speed U and (Dx,Dy) is the displacement of the bird at
time T.

birddisplacement(T,Dx,Dy,U) :- Dx=U*T, Dy==0.

Then (X,Y), the location of the bird at time T, is given by:

bird(T,X,Y,H,L,U)
[Dx,DyJ :real,
bird_displacement (T,Dx,Dy,U),
bird-init(X-Dx, Y-Dy,H,L).

The projectile is modeled as a point; the (first) stone is initially located at (0.0,0. 0)

stone_init (X,Y) :- X==0.0, Y==0.0.

Note that the constants are not moved into the head of the clause; this will enable us to call stone.init
with expressions for arguments later. (An expression, of course, will not generally unify with the constant
0.0.)

Stones are shot with initial velocity (Vx,Vy). The gravitational acceleration on earth is taken as -9.8
m/sec*sec, although an interval would be better. Let (Dx,Dy) be the displacement of the first stone at
time T. Then the simplest formulation for the projectile motion is:

243

stone-displacement(T,Dx,Dy,Vx,Vy):-
G is 9.8,
Dx - Vx*T,
Dy zz Vy*T - O.SG*T**2

Then let (XY) be the position of a stone at time T:

stono(T,X,Y,Vx,Vy):-
EDx,Dy]:real,
stone-displaceaent(TDx,DyVx,Vy),
stone.init(X-Dx,Y-Dy).

Stones are shot at time intervals of Dt; now let (XY) be the N-th stone at time T.

stoneI-th(T,X,Y,Vx,Vy,Dt,N):- stone(T-Dt*(N-1),X,Y,Vx,Vy).

The main procedure declares the basic variables and sets up the remaining constraints. The speed of
shooting V is defined by V**2==Vx**2 + Vy**2; S is the slope of the initial stone trajectory and is restricted
to be less than I (i.e. 45 degrees). Note that the last two calls equate the position of the bird and the
position of the stone at the same time, i.e., the stone hits the bird.

hit(H,L.U,V,SDt, N, T,X,YVx,Vy):-
N:integer, % shot number
Dt:real, % time between shots
H:real, % height of bird
L:real, % length of bird
U:real, % x-velocity of bird
V:real, % initial speed of stone
S:real, % angle of stone trajectory when fired
T:real, % time of hit
[XYJ:real, % position of stone
[Vx,VyJ:real,% initial velocity of stone
V**2 = Vx**2 + Vy**2, % magnitude of velocity is speed
Vx >=0, Vy>=O,% only fire up and to right
Vy=: S*Vx, % slope restriction
S >=0, S=<1.0,
T>:O, % only consider positive times
X>=O, Y>=O, % and positions
bird(TX,Y,H,L,U), % location of bird is same as
stone_N.th(TX,Y,Vx,Vy,Dt,N). % location of stone

This initial formulation can now be run with specific data(bird 20 units high, second shot, etc.)

?-hit(20.0.0.2,10.0,30.0,S,2.0,2,T,X.Y,Vx,Vy).

The answer (although a somewhat imprecise one) given by narrowing alone is then:

S : real(O.151327378188617, 1.0)
T real(3.01669538493581, 7.4455056410137)
X : real(30.1518445255967, 75.9542677273962)
Y real(20.0, 20.0)
Vx: real(S.53437068774039, 29.6622317367272)
Vy: real(4.59701024856432, 29.5097324297734)

The large size of these intervals can be reduced by several methods; the easiest method is to use solve
on one of the variables:

244

?-hit(20.0.0.2,10.0,30.0,S,2.0,2,T,X,Y,Vx,Vy), solve(T).

This yields the much narrower answer:

S real(0.878650132936296, 0.943989216521237)
T real(3.63774689050188, 3.67373888991241)
X real(36.3774689050188, 36.9373888991241)
Y real(20.0, 20.0)
Vx: real(21.8153513340085, 22.5364861715658)
Vy: real(19.8016865705633, 20.6934563921109)

The size of the intervals is now determined mainly by the size of the bird. If the bird length is reduced
to a point, these intervals also become near points, with the residual intervals reflecting round-off errors.

Another approach which is sometimes very useful is to add a redundant constraint

0 =< Vy - G*T

to the predicate stone-4isplacement. Although this merely expresses the fact that the stones's tra-
jectory is everywhere lower than its highest point, even without solve it yields the answer:

S : real(0.878438127193421, 1.0)
T : real(3.59504189240291, 4.06175182228815)
X : real(35.9504189240291, 40.8175362967534)
Y : real(20.0, 20.0)
Vx: real (19.7989898732233, 22.5388553391693)
Vy: real(19.7989898732233, 22.5388553391693)

Finally, if we replace the formula

Dy== Vy*T - O.5*G*T**2$$

in stone-displacement by the mathematically equivalent expression (formed by "completing the square")

Dy== (Vy*Vy)/(2*G) - (G/2)*(T - Vy/G)**2

we get - without solve - the answer:

S : real(O.895608876389984, 0.924134061383734)
T : real(3.60762768765977, 3.7015123584053)
X : real(36.0436531011464, 37.2740024982711)
Y : real(20.0, 20.0)
Vx: real(22.0296057795281, 22.352752887285)
Vy: real(20.0297702035754, 20.3640924671305)

Other questions, such as finding the solution(s) when the number of the stone is unknown, can also be
easily formulated, e.g.:

?- I:integer(1,10), hit(20..00.2,10.0,30.0,S,2.0,N,T,X,Y,Vx,Vy),
enumerat e (i).

Note that this problem involves both continuous and discrete variables.

245

6 Concluding Remarks

In problems involving pure integer and pure boolean constraints we have been able to compare the perfor-
mance of the initial version of CLP(BNR) with other constraint systems specialized for these domains. The
performance of CLP(BNR) appears to be roughly comparable to other systems (within a small linear factor)
in most cases so far examined. The major exception is problems consisting mainly of not-equal relations, for
which interval representations are not well suited.

One of the advantages of this approach is that the uniform semantics makes it easy to handle cases
involving a mixture of integers, booleans, and reals in the same problem. We have found that in many
cases, such as disjunctive scheduling as discussed above, the use of mixed type interval formulations leads to
significant performance improvements over previously available techniques, yet also simplifies the problem
formulation.

One area of our ongoing research is that of continuous, non-linear constrained optimization problems,
where this technology looks very promising. In marked contrast to conventional approaches, a useable general
algorithm for this class of problems in BNR Prolog is a succinct direct encoding of the classical mathematical
theory of such problems, and its execution provides in principle a formal proof of optimality as well as a
numerical solution.

The application of this technology to really complex problems is not always straightforward, because
different formulations of the same problem can sometimes have quite different performance characteristics.
Finding "good" formulations is therefore still a process of discovery, guided by experience, intuition, and a
handful of basic principles, such as the deferring of choices, the first fail principle, and the controlled use of
redundancy. Once found, however, such formulations are usually transparently clear (but possibly subtle)
statements of the problem.

Acknowledgements

The authors wish to acknowledge the contributions of R. Workman, J. Rummell, and A. Vellino of Bell
Northern Research for their myriad contributions to this project.

References
[Benhamou and Older 1992] Benhamou F. and Older W. "Applying Interval Arithmetic to Real, Integer

and Boolean Constraints" BNR Research Report, 1992.

[BNR Prolog 1988] BNR Prolog User Guide and Reference Manual, BNR 1988.

[Cleary 1987] Cleary, J. C. "Logical Arithmetic", Future Computing Systems. 2 (2). pp.125-149, 1987.

[Colmerauer 1990] Colmerauer, A. "An Introduction to Prolog-Ill", Communications of the ACM, July 1990
p.70-90.

[Dincbas, Simonis and Van Hentenryck 1990] Dincbas M., Simonis H. and van Hentenryck P. "Solving Large
Combinatorial Problems in Logic Programming", Journal of Logic Programming 8, 1&2, pp. 72-93, 1990.

[Hyvonen 89] Hyvonen, E. (1989) "Constraint Reasoning Based on Interval Arithmetic", Procedings of IJ-
CA! 1989 pp. 193-199.

[Jaffar and Michaylov 1987] Jaffar, J. and Michaylov, S. "Methodology and Implementation of a CLP sys-
tem", Proc. 4th Int. Conf. on Logic Programming, J- L. Lassez (Ed), MIT Press, 1987.

[Hong 1993] Hoon Hong, "RISC-CLP(Real):Logic programming with Non- linear constraints over the Reals"
in Constraint Logic Programming: Selected Research. F. Benhamou and A. Colmerauer, eds. MIT Press,
1993, to appear.

[Older and Vellino 1993] Older, W., "Constraint Arithmetic on Real Intervals" in Constraint Logic Pro-
gramming: Selected Research. F. Benhamou and A. Colmerauer, eds. MIT Press. 1993, to appear.

246

[Older and Vellino 1990) Older, W. and Veliino,AJ., "Extending Prolog with Constraint Arithmetic on Real
Intervals" , Proceedings of the Canadian Conference on Electrical and Computer Engineering, 1990

[Van Hentenryck 1989] Van Hentenryck P. Constraint Satisfaction in Logic Programming, MIT Press, Cam-
bridge, 1989.

Appendix

Table 1: Declarations and Definitions

Syntax Name Description
X: Type(LBUB) declaration constrains logic variable(s) X to be

of specified type and range
I is Y definition variable I takes the type of expression Y
X := Y definition same as is but only does interval arithmetic

Table 2: First-Order Relations

Syntax Name Description
X - Y arithmetic equality X and Y constrained to be equal
X =< Y less than or equal X is constrained to be less than or equal toY
X >= Y greater than or equal X is constrained to be greater than or equal to Y
X < Y strict less than (may be unsound on real intervals)
X > Y strict greater than (may be unsound on real intervals)
I <> Y dif, inequality X and Y (both integer) are constrained to be distinct

Table 3: Second-Order Relations

Syntax Name Description
X <= Y inclusion X is constrained to be a subinterval of Y
X I= Y start together X and Y are constrained to have the same lower bound
X = I Y end together X and Y are constrained to have the same upper bound

Table 4: Dyadic

Operation Type Signature Restrictions
Z : X + Y I : I + I or R :=R + Rt
Z : X - Y I : I - I or :=R - R
Z: I * Y I I * Ior R :=R * R_
Z : / Y R:f I / I or R:=R / R Y=O, X<>O automatically

excluded
Z := uia(XY) I:= min(I , I) or K :=-min(C , K)
Z := Ma(XY) I: maxCI, I) or R : anax(K , R)
Z :f (X ; Y) I : (I ; I) or R :=(R ;R) (means Z==X or Z=fY)

Table 5: Monadic

247

Operation Type Signature Restrictions
Z : X ** I I :U I ** I ; I :up. ** 1, 1 must be an integer constant
Z :____-_ I :-I ; R :-
Z : aba(X) I &abeCl) ; R: abs((R) Z >= 0
Z : sqrt(X) It :s sqrt(R) Z>20_O, _ >_ O
Z : xp(X) It :f oxp(R) Z>O
Z : in R) I : in() >
Z :f sin(X) Rt :s in(C) -1(<Za<l
Z :z asin(X) A asin(R) -lc<XI<1,-pi/2=<Zf<pi/2
Z :f cos(l) R :u cos(Rt) -1=<Zf<l
Z : acos(X) I : acos(R) -ln<Z=<I, -pi/2(<Zu<pi/2
Z:= tan(X) I :R tan(i) -1a<ZU<1
Z atan(X) A atan(R) -l1=<X=<, -pi/2=<Z=<pi/2

Table 6: Boolean

Operation Type Signature
Z :X and Y B:= B and B(and)
Z: X nand Y B:= B nand 8
Z IX or Y B:= B or B (inclusive or)
Z :X nor Y B:= B nor B
2 I xor Y B:= B xor B (exclusive or)
Z : X B:= B (boolean negation)

Table 7: Mixed

Operation Type Signature Restrictions
Z (X=iY) B:=(R== R) test/impose equality
Z (X<>Y) B:=(I<> I) equiv. Z := (X==Y)
Z (X=<Y) B:= (R=<It) test/impose inequality
Z : (X>Y) B := (R>R) equiv. Z : (X=<Y)
Z (X>=Y) B :f (R>=R) equiv. Z (Y=<X)
Z : (X<Y) B:=(R< It) equiv. Z : (X>Y)

Table 8: Miscellaneous

Syntax Semantics
lower-bound(X) interval I is narrowed to it lower bound
upper-bound(X) interval X is narrowed to it upper bound

Table 9: Pseudo-functions on intervals

Syntax Result
midpoint WX) returns midpoint of an interval, i.e. (UB-LB)/2
nedian(X) returns a point in an interval (suitable for splitting)
delta(X) returns the width of an interval (i.e. UB - LB)

248

Table 10: Control and Enumeration Predicates

Predicate Description
intezrva(I) true if variable X is an interval, fails otherwise.
donaian(, Typo(LU)) get the type and bounds of interval I,

fails otherwise.
range(X, (L,UJ) queries the lower and upper bounds of an

interval or numeric
.aumerate(IntervalList) systematic enumeration of a list of intervals

(usually used on integer and boolean intervals).
firsttail(IategerlntervalList) systematic enumeration of a list of integer

intervals in dynamic order of size.
SOlv.(I, 3, Eps) a nondeterministic subdivision algorithm

for real intervals which stops after I levels
or when delta(K) becomes less than
Epw*(initial delta(X)).
I may also be a list of intervals.

solve(X) the same as solve(X,6,O.O001).
Produces a maximum of 2**6 answers) (Note 3)

prssolve(X) an intelligent solve for use with complex
problems with many variables

absolve(X, I) deterministic predicate to trim the ends
of interval X to make it as small as possible.
N is a small integer (i 32) which controls
the relative precision.
X may be a list of intervals.

absolve(M) same as absolve (X, 14)
degrees-of.freedom(X,E,Ri,I,D) returns the number of equations E,

continuous variables R, inequalities I,
and discrete (integer or boolean) variables D
in the constraint network attached to
interval X.

constraint-nuetwork (X, N where S) returns a description of the network attached
to interval X and its current state.

249

Robot Programming and Constraints *

Dinesh K. Pai
Computer Science Department
University of British Columbia

pai@cs.ubc.ca

Abstract

Constraints play a central role in the analysis and planning of robot motion. We suggest that con-
straints form an appropriate language with which to program robot motion as well and describe the
Least Constraint framework.

1 Introduction

Robot programming has largely been based on specifying motions in terms of trajectories in a configuration
space or a state space. For example, motions of industrial robot manipulators are usually specified in terms
of the trajectory of the hand.

Such specifications are simple and intuitive and adequate for some applications. But their deficiencies
are increasingly apparent. For example, consider the problem of programming a human-like robot to walk
dynamically in three dimensions [Pai9O]. The robot has a large number joints which have to be used to achieve
a desired motion of the body. One approach to programming such a task is to pick some periodic trajectory
for the joints, and attempt to track it. However, it is not clear that this is the natural characterization of
the task.

Some important issues:

" How to specify trajectories for high degree of freedom (also called "redundant") robots? Such robots
are increasingly common since they improve versatility and fault tolerance.

Most natural specifications for these robots will only partially constrain the motion. There has been
considerable research into "redundancy resolution", i.e., the generation of unique trajectories from
partial specifications by the introduction of other criteria such as singularity avoidance (e.g., [HS85]).
But the problem of "redundancy maintenance," i.e., accepting and maintaining partial specifications
remains.

" How should a trajectory specification deal with objects in the robot's environment? It was quickly
realized that in order to perform interesting tasks, a robot has to interact with its environment - to
avoid some objects (obstacles) [LP8l] and to manipulate others [MS85]. A motion specification should
account for the geometric constraints imposed by the objects. This problem has usually been solved by
using a separate motion planner which generates a safe trajectory for a low-level trajectory executor.
However since the motion constraints are not known at run-time, the executor cannot safely alter the
planned trajectory in response to sensed events.

"* How to combine motions at run-time? The motion planning task is often divided among different
modules whose outputs are combined to produce the actual motion. Since trajectory specifications
are entirely procedural most researchers have used mutual exclusion to arbitrate among the modules,
leading to run-time behavior that is difficult to anticipate.

"Supported in part by NSERC and the Institute for Robotics and Intelligent Systems. Support for this work at Cornell
University was provided in part by ONR Grant N00014-88K-0591, ONR Grant N00014-89J-1946

250

Returning to our example of the human-like walking machine, we would instead like to program such
machines incrementally, by specifying assertions about its behavior. We can specify several requirements for
walking: for instance, (i) the foot should clear the ground during the swing phase of the leg, (ii) the swing
foot should be moved to a location suitable for dynamic balance by foot placement, and so on. The machine
is controlled to satisfy these requirements at run-time.

It may turn out that the initial requirements were inadequate - for example, one may find that there is
nothing to prevent knee flexion from becoming so large that walking is impossible. In this case one would like
to modify the existing program by merely adding new assertions: for example, by adding the assertion that
the pelvis should be above a certain height. This is not possible in current robot programming languages.

The Least Constraint (LC) framework was designed to address these problems [Pai89, Pai91]. It has
been successfully used to program dynamic walking in a simulated human-like biped and will be used to
program a new class of high degree of freedom robots that are under construction in our lab.

2 Constraints in Robotics

2.1 Robot domains: configuration space, task space

The behavior of robots is usually described in two types of spaces:
A configuration space of the robot is a space whose points uniquely describe all possible positions and

orientations of every part of the robot. It is usually understood that the dimension the configuration space
is the minimum required. Otherwise, it can be called a descriptor space.

The desired behavior, on the other hand, may be more conveniently expressed in other spaces called
task spaces. For example, the position and orientation of the gripper of a robot is a task space used by most
industrial robot programming languages.

The configuration and task spaces are usually differentiable manifolds, but not necessarily covered by a
single chart. The space of rigid body rotations, SO(3), is a common example.

Typical spaces include:

"* Joint space: the configuration space of a chain of rigid bodies with one degree of freedom joints. Most
industrial robots are of this type. A robot with r revolute joints and p prismatic joints has a joint
space =_ T7 x RP.

"* The space of rigid motions: In three dimensions, this is the manifold of the Special Euclidean group,
SE(3) - R13 x SO(3). In two dimensions, this is SE(2) =- 2 x S'. The desired configuration of an
object manipulated by the robot or of a link of the robot could be expressed in this space.

2.2 Geometric Constraints

Interaction between a robot and solid objects in its environment impose a natural set of constraints on
its motion and have been extensively studied in motion planning (see e.g., [Yap87, Lat9l]). The solid
objects are usually modeled in world coordinates and can be transformed into configuration space (see
[LP83, Doni87, Lat9I]).

For example, consider the configuration space of a mobile robot modeled as a rectangle free to move in
the plane; its configuration space C is JR2 x S1 with coordinates x for R2 and 0 for S1. A configuration space
obstacle COk due to a convex subset Aj of the robot interacting with a convex subset Bk of the obstacle
can be defined by a family of constraints [LP83, Don88],

Cik := (8 EA.) -- (f(x,) <0). (1)

Here fi : C ý-4 R with positive fi corresponding to free space. Ai is the applicability set, which in this case
is of the form

(0 < AO <_). (2)

The configuration space obstacle is given by

A Cak (3)
iEelamiliy(A , B,)

251

In the general case when the robot A and obstacles B are non-convex, th, an be decomposed into (possibly
overlapping) convex polygons Aj and Bk, so the general form of the free configuration space around the
obstacle is

(V A ~ Y)(4)
jk ,EcfamiJy(A•,Bk)

2.3 Motion constraints

The physics of the robot and its interaction with the world imposes additional constraints on its motion.
The exact constraints depend on our model of the robot and its world. Modeling remains a task involving
engineering judgement regarding the significant physics. It is important to note that unlike the geometric
constraints above these are differentiai-algebraic constraints.

The following are constraints resulting from some commonly useful models.

2.3.1 Differential kinematic constraints

Simple examples of such constraints are bounds due to actuator limits or safety considerations of the form

4.in <5 4 < 4.,.' (5)
4. _< 4 _< 4.a-- (6)

More interesting constraints arise from motion involving rolling without slipping, such as in wheels and
fingers. In the above example of the mobile robot with x = (z, y)T, the constraint that the instantaneous
motion of the center of a wheel is restricted to the plane of the wheel leads to a differential kinematic
constraint

isin0- ycosO = 0. (7)

This constraint can be shown to be non-holonomic, i.e., it can not be integrated to produce a geometric
constraint involving r, y, and 0 only.

2.3.2 Dynamic constraints

The dynamics of the rigid bodies in the robot and the dynamics of the actuators can be significant for high
performance robots. These lead to a system of highly non-linear, coupled differential equations which impose
additional constraints. The formulation of these constraints for control and simulation has been extensively
studied (see e.g. [FLS88]). These can be broadly classified as

"* State space constraints: the equations of motion are formulated in terms of a minimal set of La-
grangian coordinates q, leading to a system of ordinary differential equations. For example if a robot
is constructed as a chain of rigid bodies, the equations of motion are of the form

4 = v, (8)
M(q)v = r -. f(q,v), (9)

where M is a symmetric positive-definite inertia tensor and ri is the generalized force applied along qi.

"* Descriptor space constraints: the equations of motion are formulated in terms of a sufficient, but not
necessarily minimal, set of coordinates, x. Additional constraints are imposed between the coordinates,
leading to differential-algebraic equations of the form

x = v, (10)

M(x)v" = f(x,v)+GT(x)A (11)

0 = g(x), (12)

where M is a (different) symmetric positive-definite inertia tensor, G = [Dg], and A are Lagrange
multipliers. A common example is to take the position and orientation of each rigid body as descriptors,

252

and introduce constraints for each joint of the robot. It is easier to formulate the dynamics of closed
kinematic chains using this approach. However, equations in descriptor form can be difficult to integrate
for high index problems [BCL89, AP9l].

3 Least Constraint (LC)

3.1 Program constraints

While the system constraints above have been used in the analysis and planning of robot motion, user
specification of desired robot behavior has been in terms of either a trajectory of the robot or a goal state 1.
In the former case the motion is explicitly specified and the main focus has been on the control of the robot
to track this trajectory. In the latter case, the motion of the robot is implicitly specified and the focus has
been on motion planning, i.e. the construction of a trajectory which reaches the goal.

We believe that specifying robot motions with constraints is appropriate and natural in many situations.
A simple example is toleranced motion, in which we want to follow a trajectory but within a generous
tolerance of the nominal trajectory. Most robot motions are of this type. Another example is the idea of a
"funnel" [Mas85]. Here we only require that the robot lie in a set that contracts over time until a desired
set of configurations is attained.

3.2 LC

In the LC framework, motions are expressed by means of time- and state-dependent assertions [Pai9l]. These
assertions are defined using inequality constraints which describe the set of allowed states as a function of
time. The constraints are solved at run time to produce a satisfying motion.

Since complex mechanical systems have large state spaces, it is not convenient or natural to express all
of the constraints in a single space. For instance, even the simple walking machine simulated in [Pai90]
has a 28-dimensional state space. For convenience of expression, users define derived variables in terms of
the basic (e.g., state) variables - an example of this is the definition of task and end-effector coordinates
for robot manipulators. LC generalizes such constructions to allow the creation of arbitrary, user definable
quantities which are natural to the tasks and the constraints being expressed. One can isolate small groups
of variables into domains on which to focus. For example, the foot collision constraints in the above walking
"example are best expressed in a separate foot position domain.

In LC, users define a domain system, {(' : i E I), related by linking functions

lij :DP- Dj, (i,j) EL CI x 1, (13)

which satisfy the basic consistency condition that all diagrams of the following form commute.

loN. ./ilqj

Di /p

All domains DV are connected to a basic domain VD0 by compositions of linking functions

pO13...-1.. Di.

Briefly, the motivation for using domain systems is that they allow a constraint on a subdomain V' to
be lifted to an equivalent constraint on the basic domain VO using compositions of linking functions. V0 is
usually the configuration space or state space.

1 A notable exception is the potential field approach to obstacle avoidance [Kha86] which shares many features with LC. LC
generalizes obstacles to constraints in arbitrary domains. See (Pai9l] for a discussion.

253

A motion specification in LC consists of a system of time-varying inequality constraints a, n E A, on
the domains V'; here each constraint C. is expressed by

C :--f(X',xi,xt) <_ 0,

where f D 'P' x TP' x R - R is a smooth map and x'(t) denotes a time-dependent trajectory in P)'. Such
C., and their conjunctions

C:= Ac.
a

are executable LC motion programs. The meaning of the constraint is that the robot is controlled to make
the specified expressions C. := f.(x, k, t) < 0 true at all times t.

3.3 Constraint Satisfaction

LC programs are executed by satisfying constraints at run-time. This produces a trajectory x(t) E V° such
that the derived constraints

C.o := Y((L, 0o ... 0o j)(x(1)), t) < 0

obtained by lifting the original constraints using the linking maps are satisfied at all times t. In LC, this is
done at discrete time steps t(n): at every time step t(,), a feasible point x(t(,,)) is produced, and is used to
compute the control u.

Criteria for good constraint satisfaction algorithms for LC constraints are quite different than those
encountered in other domains such as finite constraint satisfaction and large scale optimization. We first
describe features of a suitable constraint satisfaction algorithm and then describe the constraint satisfaction
algorithm we currently use.

"* On-line constraint satisfaction. This is required since many of the constraints will only be known at
run time.

"* Any time solution [DB88]. The constraint satisfaction should be interruptible - if a feasible solution
cannot be found in the allotted time an improved estimate should be returned.

"* Exploit continuity. The constraints typically vary slowly relative to the rate at which they are satisfied.
Since a similar problem was solved at the previous time step, a good starting guess is available.

"• Exploit "large" feasible sets due to inequality constraints.

LC separates the specification of constraints and the techniques used for satisfying them. Different
constraint satisfaction algorithms can be used. We first discretize the constraint function in time using
numerical methods with good stability properties such as linear multistep methods or implicit Runge-Kutta
methods [BCL89]. The step size h > 0 is taken to be the servo rate. For example, using the simple implicit
backward-Euler scheme, the constraint

i -cos(P)v < 0

is discretized as
Z(n) - X(n-1) - h cos(e0())V(n) < .

The discretization yields a set of algebraic constraints in X(n) at time t(n).
Next, the inequalities are solved to produce a solution at t(n). The solution is usually advanced a few

time steps beyond the present time to produce a trajectory segment, combining simulation with trajectory
generation. We currently use a conjugate direction method with a quadratic penalty function. We have
also experimented with other methods such as relaxation methods [Pai9l, Zha] and barrier methods. These
methods are local and iterative. The locality is a limitation but makes the methods fast enough to be
implementable in real time. The methods exploit knowledge of a good starting point for iteration. Since
the feasible sets specified with inequality constraints are usually of non-zero measure and typically large,
overrelaxation is used to speed convergence. The gradients are computed cheaply using automatic differen-
tiation [PS93], which enables us to compute each update within only a small factor of the time to evaluate
the constraint functions.

254

p

y

0~

x

Figure 1: Mobile Robot Notation

Finally, the satisfying trajectory segment is sent to a low-level tracking controller which drives the
actuators.

The method is fast and effective in practice. We should point out that the numerical solution of
non-linear systems is a delicate matter. There are several practical considerations such as pre-scaling of
constraints, maintaining active constraints and selecting numerical tolerances that are important for imple-
menting such constraint solvers.

4 Example: Mobile robots

Here we demonstrate the LC approach in programming the motion of a mobile robot. This work is part of
the Dynamo mobile robotics project at UBC led by Mackworth and Pai. The Dynamo facility includes the
Dynamite testbed consisting of radio controlled cars whose absolute position is sensed at video rates using
off-board vision.

While mobile robots are relatively low degree of freedom machines, a collection of mobile robots may
be viewed as a single high degree of freedom robot. The presence of non-holonomic constraints also adds
to the difficulty of specifying the motion of a wheeled robot. These constraints do not lower the dimension
of configuration space, but on the other hand, the user cannot specify an arbitrary trajectory to track. By
specifying the desired motion weakly in terms of the constraints on the required motion, the constraints can
be solved at run-time to produce a motion that satisfies the constraint.

The dynamite mobile robots are front-wheel steered with a steering angle 0 and can be controlled by
setting a throttle value and steering angle. We have implemented a jow-level PI controller which servos the
robot to track a specified speed vd and turning radius Pa. To a first approximation, the robot can be modeled
as a kinematic machine, with two inputs vd and Pd. Experiments with programming these mobile robots
with LC are in progress, but we describe a simple example here.

Following the notation in [Lat9l1 (see Figure 4), let the configuration space C of the mobile robot be the
space of displacements of a coordinate frame (07, x., y,.) attached to robot. C has coordinates z, y, 0. For
simplicity, we take 0 E R so C is a covering space of SE(2). Define the forward speed v = i cos(0) + y sin(O)
and the turning radius p = v/O. Note that p is a signed quantity, with p > 0 corresponding to the center of
rotation of the robot lying to the "left" of the robot, i.e., having y,. > 0. However, since p = oo when the
robot is moving along a straight line, we use the less natural but more convenient quantity I = 1/p.

The robot has the following constraints
Motion constraints

1. Rolling constraint:
C1 := zsin(0) - ý cos(0) = 0 (14)

255

t2M4.122i

Figure 2: Dynamite robot pen

2. Speed limit:

C 2 :v .. i:sv) A(v -< vm.) (15)

3. Steering limit:
C3 := ((mi, < •)A(< c--o) (16)

Geometric constraints

4. Wall and obstacle constraints: The robot is in a convex, enclosed pen populated by other robots (see
figure 2). The pen and the robots are well represented by convex polygons. Details of representing the
free space of the robot among such obstacles can be found in [LP83, Don88, Can86]. Here only type-B
contact between an edge of the pen and a vertex of the robot needs to be considered and each contact
mode generates a constraint in the configuration space. Let an edge w be at a distance d" along the
unit normal to the edge (nw,r, nwy) oriented in the direction of free space. Contact between the edge
and the vertex u of the robot whose coordinates are (pu,x, pu,,) in the (Or, Zr, yr) frame generates the
configuration space obstacle constraint (see Equation 1)

Cu, := (0 E Au,w) - ((x +pu,z cos 0 - pu,y sin 0)nw,z) + ((y+pu,r sin 0+ pu,y cos 0)n,,y) - du < 0 (17)

User constraint

5. Pusher: The task is to reach the "end zone" 0 < x < 25 at the left wall (see figure 2). This can be
achieved by the constraint

Cp := X - XW,'Ma + st < 0 (18)
where s is the speed of the pusher and Xw,maz is the x-coordinate of the right wall.

With more complicated obstacles, a motion planner can be used to process the constraints into a form
suitable for LC. For example, Brooks [Bro83] describes a method for extracting a net of "freeways" which
are generalized cylinders covering the free space of the robot. However instead of traveling along the spines
of the cylinders as in [Bro83] we can use the freeways as constraints. The robot is pushed through a freeway
by pusher constraint. The advantage of this approach is that additional constraints such as those due to
unforeseen obstacles can be added run time.

5 Future Work

We are developing a new version of LC with a better software architecture, improved performance, and with
additional capability to handle differential-algebraic constraints. This is required for new applications such
as programming modular legged robots. The new implementation of LC in progress is designed to be efficient
enough to run on a network of small embedded controllers.

In the long term, we are interested in the problem of verifying the correctness of LC programs for
appropriate notions of correctness. This involves exact or approximate methods for detecting topological
changes to the feasible set of system states and for estimating whether a connected component of the feasible
set will collapse.

256

References

[AP91) U. Ascher and L. R. Petzold. Stability of computational methods for constrained dynamics systems.
Technical Report, Computer Science Department, University of British Columbia, May 1991.

[BCL89] K. Brenan, S. Campbell, and L.Petzold. Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations. North Holland, 1989.

(Bro83] R. A. Brooks. Solving the find-path problem by good representation of free space. IEEE Transac-
tions on Systems, Man, and Cybernetics, SMC-13(3):190-196, 1983.

[Can86] John Canny. Collision detection for moving polyhedra. IEEE Trans. PAMI, 8(2), March 1986.

[DB88] T. Dean and M. Boddy. An analysis of time dependent planning. In AAAI-88, 1988.

[Don87] B. R. Donald. A search algorithm for motion planning with six degrees of freedom. Artificial
Intelligence, 31(3), 1987.

[Don88] B. R. Donald. A geometric approach to error detection and recovery for robot motion planning
with uncertainty. Artificial Intelligence, 37((1-3)):223-271, Dec. 1988.

[HS85] J. M. Hollerbach and K. C. Suh. Redundancy resolution of manipulators through torque opti-
mization. In IEEE International Conference on Robotics and Automation, pages 1016 - 1021,
1985.

(Kha861 Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International
Journal of Robotics Research, 5(1):90 - 98, 1986.

[Lat9l] J. C. Latombe. Robot Motion Planning. Kluwer, 1991.

[LP81] Tomis Lozano-P~rez. Automatic planning of manipulator transfer movements. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-11(10):681-689, 1981.

[LP83] Tomis Lozano-P~rez. Spatial planning: A configuration space approach. IEEE Transactions on
Computers, (,-32(2):108-120, February 1983.

[Mas85J Matthew T. Mason. The mechanics of manipulation. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 544-548, 1985.

[MS85] Matthew T. Mason and J. Kenneth Salisbury, Jr. Robot Hands and the Mechanics of Manipulation.
M.I.T. Press, 1985.

[Pai89] Dinesh K. Pai. Programming parallel distributed control of complex systems. In Proceedings of the
IEEE International Symposium on Intelligent Control, pages 426-432, September 1989.

[Pai90] Dinesh K. Pai. Programming anthropoid walking: Control and simulation. Cornell Computer
Science Tech Report TR 90-1178, 1990.

[Pai9l] Dinesh K. Pai. Least constraint: A framework for the control of complex mechanical systems. In
Proceedings of the American Control Conference, pages 1615 - 1621, 1991.

[PS93] D. K. Pai and T. H. S. Ser. Simultaneous computation of robot kinematics and differential kine-
matics with automatic differentiation. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems '93, 1993.

[RS88] R. E. Roberson and R. Schwertassek. Dynamics of Multibody Systems. Springer-Verlag, 1988.

[Yap87] C. Yap. Algorithmic motion planning. in Advances in Robotics: Volume I, edited by J. Schwartz
and C. Yap, Lawrence Erlbaum Associates, 1987.

[Zha] Y. Zhang. Constraint methods for specification and design of hierarchical control systems. Term
Project for CPSC 532 -Computational Robotics, University of British Columbia, Spring 1992.

257

Constraints in Nonimonotonic Reasoning*

Wfiliam C. Rounds and Guo-Qiang Thang
Artificial Intelligence Laboratory

University of Mlichigan
Ann Arbor, hG 48109

(rounds, gqz)@engin.umich.edu

Abarmes

We."ees on de an of constraints to govern partal models of first-order logic. These moodels we coinstructed
uigsystemns of default rules, as in die default logic of Reiter, but where Reiter's rules build logical theories, our

rules build models. Our apprach takes advantage of doatain-disoretic notions. A system of default rules is a straight-
forward generalization of Scot's notion of infornation system, already an important tool in understanding constraint
programming.

We apply our thecry to resolve an anomaly due to Poole on the meanming of defaults. Using finite default mod-
els, constraints, amid a constructive, rule-based notion of conditional degree of befief. we give a probdAblistic way of
interpreting default statnumits.

1 Introduction

This paper is concerned with an application of constrAint thecay. information systems, and domain theory in artificial
intelligence. Specifically, we are interested in finding a proper semantic setting for Reiter's original work on default
logic [10]. We would like to report on a new solution to this problem, which we call default model theory. This thecay
comes in several flavors. In this paper, we show how to give default model semantics to first-order logic. Doing this
crucially involves the notion of constraint as a kind of law that governs the behavior of partial models of first-order
logic.

Etherington [4] gave the; first model-theoretic: semantics to Reiter's logic. This was a system based an sets of
first-order models. Marek, Nerode, and Remind [8], gave a semantics for nonmonotonic rule systems. They trianslated
Reiter's default rules into finitay formulas of a certain specia infinitary logic. Extensions - the cennal construt of
Reiter's logic - are viewed as models for certain formulas encoding the existence of defaut derivations.

Our approach has certin commonalities with the Nerode, Marek., and Remmel theory, in that we view extensions
model-theoretically. However, we use extensions as models for ordinary flrst-order logic, not the special logic used by
Marek. Nerode and Rerninel. It will also be clear that first-order logic is not the only possible logic for which default
models could serve as a semanitic sapce. But we concentae; on the first-order case, since that involves dft use of
constraints.

Our treatment also has the advantage that one can analyze deault reasoning situations by working directly with
models, as one does all the time; in ordinary rmathemaitical reasoning& This contrasts with the approaches of MNR and
Etherington. where in the first case. the logic describes a proof theory, and in the second, where one works with sen
of first order models as models for default logic. We hold the thesis that Reiter's default systems should be regarded,
not as proof rules, but as algoritkms for the direct construction of parsin models for some appropriate logic. This is a
simple and raidical reconsbumdon of default reasoning. 7b give it a proper explication, though, we use domain-theoretic
tools - information systems and Scott domains, in particular, since in our view default reasoning is about what happens
when information necessary to resolve a question is lacking. No one to date (including us) has attempted to use the
ful power of domn= theory to attack such questions.

As we have sated, we want our models to be governed by constraints, which in our setting are thought of as laws
which govern the behavior -f partia models, but which are in the background. This is an idea taken from situation

ORea~nz sponsored by NSF amw IRI-912085 1.

258

theory, we Barwise's book [2), but Itis very much dan to the notion of constraint in CLIP. We encode a consraln
theory into ftl monolanic forcing lation I- of a Scott inormati system appropriate for a Amft logic semantis.

How to accomplish this encoding is not absolutely clear. One possibility is to use a genmralimtion of informad'ti
systems themselves. due to Suswat et al. 11], to the Ast-order case. We have determined. however, Urn such a
move is mneccesary. We represent consmaint theories as a special case of ordinary monotnc information symsns.

Senext problem is how to add a nonm-notonw component to information systems. This we have don by
simply adding default foring rules to Scot's systems. We prove in the full paper tat this a nmatual move, am an ad
hoc one, by sbc-ing that (normal) default information systems characterize an abstract domain-theoretic €onoepm the
idea of a wmal covwft relation on a Scoa domain. This result generalizes Scot's own a zariadon o(domains
via infonration systems.

A MalW problem is how to use the domains we generate as models for fnt-order logic itself, and specifically. how
to hInt negation. We have chosen a rstricted, positive version of fist-order logic, which only allows nu tion on
aomic formulas. Then we introduce a notion •- of non-monotonic conseqwnce between sentencs of firstaoder logic.
as in Kraus, Lehmann, and Magidcw [6]. We say tdat in a default model structre, one semence non- en-
Wtis a second f the second holds in all extensions of "small" partial models of the first. Hem "snallness" is intlepred
with respect to dhe natural partial order associated with a Sott domain.

We then turn to the construction of probabilities using finite models. Finite default models are of course a special
case of our theory. We can generalize the usual finite model theory to partial modes, and can use default rules to assign
probabilities to statements in FOL, representing an agent's degree of belief in certain situations obtaining. This gives
a way of thinking about the usual "birds normally fly" as a probabilistic statement. We illustrate this method in the
resolution of an anomaly with standard default reasoning, due to Poole [9).

The paper is organized as follows. In section 2 we cover the basics of domain theory and information systems.
introduce our non-monotonic generalization, and state a representation theorem for default domains. In Section 3 we
show how to interpret first-order positive logic using default models. This is where constraints play a crucial role. Then
in Section 4 we introduce our notion of conditional degree of belief, and ta Poole's anomaly. Finally, in Section 5
we mention odt applications of our theory, including some speculations on CLP itself.

2 Default Domain Theory

2.1 Domain Theory

7b make the paper self-contained, we recall some basic domain theoretic definitions. A directed subset of a partial
order (D,) is a non-empty set X C Dsuch that for every z, V e X, thereisaz f X,z C z & y C z. Acomplete
partial order (cpo) is a partial order which has a bottom element and least upper bounds of directed sets. A subset
X C D is bounded (or compatible, consistent) if it has an upper bound in D. An isolated (or compact, finite) element
z of D is one such that whenever z C U X xithX directed, we also have z C y for some y E X. A cpo is algebmric
if each element of which is the least upper bound of a set of isolated elements. A cpo is w-algebraic if it is algebraic
and the set of isolated elements is countable. A Scan domain is an w-algebraic cpo in which every compatible subset
has a least upper bound. By convention, we write z I y if the set {z, y) is bounded.

Now we review Sco's representation of domains using lnformation sys•ems, which can be thought of as general
concrete monobonic "rule systems" for building Scaon domains.

Definition 2.1 An ljfonnoaon system Is a structure A = (A, Con, F-) where

"* A is a cowuable set of tokens,

"* Con C Fin(A), the consistent sets,
* I-C Con x A, the entailment relation,

which sawd#
I. X C_ Y & Y Con ffi 6 X Con,

2. a E A I {a) E Con,
3. X F- a &X E Con X U { a) E Con,

4. aeX & X E CGnm X - a,
5. (VbE Y. X I- b & Y I- c) = X I- c.

259

uamnpe: Apprausle red ambe. For tokens.tae the et A of pans of ationds (q, r). wish q r.
The idea is -1 a pair of rational stands for doe *Vroxi*don" dat a ye to be dermined real numbr U in the

Interval f#, r) whose endpoints we given by die pair.
Define a nise set X of "intervals" to be in in Cbn if X is empty, or if the intersection of the "iervals" in X is

mfpay. Thea my that a set X 1- (q, r) iff the inmersectin of all "intervals" in X is conained in the ierval (q, r].
Now dtat sdaen is only tomic structure to these p-opoiaions. We cannot negae them or disjoin them.

The repesenttion of Scott domains uses the auxilimy consmmt of ideal elments.

Debiltin 2.2 An (Weal) element of an Wormrnion syStem A Is a set z of Wke which is

I. consistent: X C_ : * X E Con,

2. closed under etmailmet: X CE z & X F- a * a E z.

"MW collection of ideal elemens of A is writtn W.
Example. The ideal elements in our appmximae rmel system we in 1-1 cor with fe collection Of

closed real intervals [z, V] withz a< y. Althoua the collection of ideal eleents Us pially ordered by inclusion, the
domain being desried - intervals of reals - is prially ordered by reverse interval inclusion. The toual or maximaul
elements in the domain corraspond to perct" reals [, r). The bottom element is a special interval (-oo, oo).

It can be easily checked that for any infornation system, the collection of ideal eements ordered by set inclusion
forms a Scott domain. Conversely, every Scott domain is isomorphic to a domain of such ideal elements. These results
we basic in domain theory, and have been generalized to other classes of complete partial orders by Mang [12] and
others.

2.2 Default Information Systens

We generalize the theory of information systems by simply adding a default componenL We should mention at this
point that we limit ourselves to the so-called normal default sructumr. The reason for this is not that we cannot defin
general default rules, but rather that there ae problems with the existence of extensions in the full case that we want
to avoid.

Definition 23 A normal default Information structure is a tuple

A = (A, CQm,A, F-)

where (A, Con, F-) is an information system, A is a set of pairs (X, Y) of consistentfudie subsets of A, each element of

which is written asX:Y
Y

In our application, tokens will be "tuples" or infons of the form

((a,, M i, ...- , ,,71 ; 0 ,

where u is a relation name, the mi we elements of a structure, and i is a "polarity" - either 0 or I. The rules in a
should therefore be read as follows. If the set of tuplcs X is in our current database, and if adding Y would not violate
any database constraints, then add Y.

In default logic, the main concept is the idea of an extension. We define extensions in default model theory
using Reiter's conditions, but extensions we now (partial) models. The following definition is just a reformulation, in
information.theoretic terms, of Reiter's own notion of extension in default logic.

Deunition 24 Let A - (A, A, F-) be a default information structure, and z a member of LAI. For any subset S. define
4b(z, 5) to be the union UiE,, O(z, S, s. where

•=S,O0)=,

({, S, i + 1)= (z, ,U(UY I "x•-_w &EA & X C -(z, S,,% & Y USE o

y is an extension of z if O(z, y) = y. In this case we also write zb&y, with the subscript omittedfrom time to time.

260

Iursmpk (1): Te dght qussmprble. We have in mind in ma x 8 chessboard so•eSt {80, ... 7). Our
ken ut A wil be 8 x 8. Asubm X a(rAwillbeinConfUIt rpondstoan ardssibleplcemmofupso8

quezs an the boawd For defaults A we take Ut singleton sets

40) 1 ()E 8 x 8).

Wemay takel- to be uiviat X t- (i,j) iff (ij) E X. Now, ifz i6 admissible placement. doen th exlmusiau y
oaz are those admissible placerents containing z and so that no mom queens may be placed wifth violating die
constraints of the publem.

Rumple (2): Default approshmate reils. Use tie informatiom system described above. We might Ike to my
hat "by default, a adea number is ither between O&Wd1. or is the number ir". We could express this by leting A comist

of an rn wba Y rage over msi st or pairs I(p, q)) such thap o 0uad q ?1. sagedur wim

tllose pairs ((r,&)) such tiot r < vind& > r. Tben. in the ideal domain, dte only extension of [-1,21 would be
(0, 1]; the interval [-2, 0.5] would have [0, 0.5] as an extension, and these would be 2 extensions of [-2,41. namely
[0, 1] and [r, r].

These examples we intended to wean the reader away from the view of defaults as default logic. In the eight
queens problem. it seems desirable to have a language for reasoning about differing placenmets. For example, given a
placement z, is then an extension y which uses all eight queens? Thiis corresponds exactly to our philosophy: default
systems ae used model-dteoretically. and logic is used to describe default models. The example also foreshdows how
constraints are to be modeled using the I- relation. For first-order systems the constraints can be explicitly described
as first-order axioms.

2.3 Representation theory

We now restate the definition of extension in domain-heoretic enns. In the following. DO is the set of finite elements
of the Scott domain D.

Definition 2.5 Let (D, q) be a Scott domain, and A a subset of Do x Do. The normal preferential cover 6A determined
by A is the binary relation on D given by the condition

zbAy-C* y p= -uU Up 1(3A E:) :((A,0) E A & pI y).

Hemr p I y means that the set 1p, y) is bounded or consistent.

The idea of this definition is that (A, p) E A denotes a default of the form - . One can prove all sors of facts
about extensions purely order-theoretically, asswning that D is a Scott domain.

Theorem 2.1 Let D be a Scott domain and A be as above.. We have

L. Vz E DMy E D Z6Ay.

2. If z6Av then Y _ z.

3. z 6A andY 6Az imWpes = z.

4. If z6AP and z C z C y then zbAy.

5. If z6Ay and z6 Ay' then either y = y' or y yv'.

For the special case of precondition-free normal defaults, where (A, p) E A -- = .L, we have

Theorem 2.2 zbAy i an only if there is a B, a mamal subset of {p I (1, p) E A) such that B u z} is bo ded.
and such that

These results all suggest a general representation theorem.

261

Tbeorem 2.3 Evey normal prvferential c~owrWn relation on a Scott domain is isomqrphc to the exreason relation
gewteated by a nomal defindt system, and conversely.

The real point of i the cuirm is that. since Scott domains art quinieusentialy znodel-theoretic, we should regard
defaut systems this way too.

3 Constraint default structures for first-order logic
Assume, forpurposes of this papa. that we am given a signature for firs-order logic with equality, and writh no functiont
symbols other than constants. (This is essentially Datalog.) St will linterpre Am order logic using a nauwingidwd does
of models. Our snm= will be default information systemis baed on a particular set of individuals M. We first have
to assume some conasraiwa on any relations which we going to be holding in such sets M. These constraints Will be
used to genmmae the monobonic forcing relation I- in the default structum. (The defaults themselves can be wbibwy,
as long as they we normal.) We can use sets C of arbitrary closed formulas of first-order logic to state background
constraints; in fact. we can use mny language for which first-order structures we appropriate models.

7b interpret formulas, we first of all choose some set M of individuals. We do not fAx rielations on M asin the
standard first-order case. but we do choose particular individuals to interpre the constants'. Now, tokens will be infons
of the form

a a(JR, m,,..,fi;i)
where R is a relatim name, mj E M, and i E {0, 1). (lThis last item is called the polarity of the token.) We say dt aa
set 5 of these toesis admissible if (j) it does not contain any tokens conflicting in polarity, and (ii) it mazches a model
of C in the usual first-order sense. That is, there is a structure,

where the Rj are relationts on M of the appropriate anitics, such that M is a model of C, and such that

Similarly,
((l,Rml,...,m.;O0)) E . j *R(ml,..., m.) is false.

An admissible set of infous is total if it is maximal in the subset ordering on sets of infons. A total set is isomorphic
to an ordinary first-order structureM.

Now we can specify a default inkr -,)n structure relative to M and C. Actually, the work is in specifying the
strict (monotonic) part of the system. j-aults can be arbitrary normnal ones.

Definition 3.1 Let Af be a set, and C a constraint set. A first-order default information structure relative to M and C
is a structure of the forffr

A(M, C) =(A, Con, A, F-

where A is the wkges set described above. A jiite setXof tokn wllbe inG itis admissible, and X F- or iffor
any total admissible set t. fX C I thenor E t.

Examples. The above defintion encodes the constraints C into the I- relation of the information system. For
example, consider dhe constraint obtained by taking C to be the tru foirmula t. Intuitively, this should be no constraint
at all. so our entailmnent relationtshould be the minimal one in which X 5- a if and only ifo' C- X. This is in factthe
case. First notice dot because C - t, that a total admissible set t is one which (i) contains no infon a - ((0, m; s))
and the dual infon T of oppiosite polarity; an (ii) for any infon a. contain either a' or W. Now let X be a finite set of
inflons. If X F- a' then by properties of information systems, the dual infon F V X. By definition of F., for any total
admissible set tof infons, ifX C tthen orE t. If ais not in X,let tbe atotal admissible set containing Xand die
infont 1 of opposite polarity. Then both a' and 7 would be in t. which is not possible for an admissible seL

Here is a more interesing constradint system:
In erms of philuoaghy of language. we an taking cmonsaai to be rigid designators.

262

lzrcek. Cnder te eight queaus proe smin. Wrie •m-order o mints C expressing; th contraints of
te eight queens pvilrn.

Notice dth ow general definition as easily modified to pticuw dlosses of interpreation. Par ampVe. our
constraints my be awed for just one intended model, ay the mal number wii addition uid muliplicaboio In doti
mc, we choose ow as M to be allowable by dt pw&,ulam Iupimaoe dons, md we change the definition of
admlsslbuly so dot Aim-oer strutres we chosen from our pticulw class as welL Technically, we should restrict
Mso be coambl so that out Scou domain is in fact -algebraic. In fact. though. we will moody be iniamd iAnkle
WWizIt models for b6-ord logWc.

3.1 Syvntaz and Semantics

In this workshop Iq ir, we give just on application of constraints in Amaord default model theory. This consists
a a probabilistic suwlotion of a wimaly in d•eault logic, due to Poole [9J. k begin. though, with the symax wad
semantics of first-orft logic itself.

Here is the ofcial syntax:

j, ::- t I f Ip A,~v -p.,,, ,ev,.. , I ip V •'l o I 3zi I V--j

where R(vl,..., v,) is an atomic formula and the vi ar eithri variables in some set X. or constants.
We remark that one can treat the case of arbitray negations by interpreung negation using the strong Kleene truth

tables. This interpretation gives us a persistence property for partial models that is useful in esiablishing properties of
nonmonotonic entailment and conditional degree of belief. For simplicity we omit this general definition.

Next we turn to the semantics. Fix consmints C and a set M. Then select a default information strucur&A(M, C).
Let & be an ideal element (also called a situation) of A(M, C), W dlet•a : X -, M.

Then the clauses for (s, a) = jp are as follows.

a (,a)It always and frnever,

a (e,) J- R(vj. ... , v,) iff ((R,a(v) ... & ,(v,,); 1)) E s. (If some of the vi, are constants, we use insadofa(v,)
the fixed intepreadon of that constan.)

S(s,a) = v.) iff ((R, *(vi),..., CO.);0)) E s;

* The usual clauses for A and V;

S(s, a)= 3vi iff for some m E M, (s, a[-- m]) D IP;

S(s,o)= Vv; ifffor all m E M, (s,a [v .- m]) k'.

3.2 Nonmonotonic consequence

Our semantics can now be used to define a relation of nonmonotonic entailment, wruen k-, between sentences of
our (positive) first-order logic. Understanding this noton is a step towards understanding the probabilistic measure
introduced in th next subsection.

Intuitively. when we say that jp nonmonotonically entails 0. we mean that having only the information 'P. we can
"leap to the conclusion" ik. The usual example is that. knowing only that Tweety is a bird, we can leap to the conclusion
dth Tweety flies, even though penguins do not fly. A great deal of effort in the Al community has gone into giving a
proper interpretation to the assertion 'p I- 0. We use (finite) default models and extensions to interpret it.

The notion of 'only knowing" ' inp • 4 7 P], given a default information structure, is captured by interpreting
the antecedent jp in a certain small class of situations for the structum. There we at least two possibilities for this
class. One natura one is to use all set-theoretically minimal situations supporling 'p. The second is to interpret 'pin
the •spmm closure of thesen minmal models. We choose the second in this pWaer, because it seems better motivated
fro the probabilistic standpoint to be given in the next subsection.

We therefore make the following definitions.

Definition 3.2 Let A(M, C) be a default information structre, and 'p a sentence of our logic. Let s, t range over
siuations.

263

"* MM(op) istlka{c i. tsminimalsuch tha as ý ai};

"* U(jp)s tW$t @um clamore of MM(v): the collection of saaaoaorobwlcuedby taking consistent leas upper
bounds of aWraty subcollecions of M M (f). If. E U (to) we will say thats is a miniual-closwe model of t,.

Notice dot since ow logic is positive. every situation in U(io) will suppz wo.
Given these concepts. we can define nonmonotonuc conseuWe as follows.

Ddeiaoin 33 Let : and 0 be sentences infirst.order logic. Let A = A(M, C) be afinite normal defadt Whonnation
system as above. We say that ip F'• 4ffor all mininal-closure modelss E V(W),

Vt: t s an A-extension of s = t fl.
Example. We give the standard bird-penguin example. Assume tiro our language contains two predicates Bird

and Penguin, and dm1 Tweety is & Constant. Let C be the motraint

(YzXPenguin(z) -- Bird(z) A -Fly(z)).

Consider a stwucni .4(M, C). Form the defaults

((bird, m; 1)) : ((fly, m; 1))
((fly, M;))

for each m in M. These defaults express the rule that birds normally fly. We then have

MM(Bird(Tweety)) = U(Bird(Tweety)) = {{((Bird, tw; I))))

where tw is the element of M interpreting Tweety.
The only extecsion of {((Bird, tw,; 1))) is { ((bird, tu'; 1)), ((fly, tw; 1)). Therefore

Bird(Tweety) f- Fly(Tweety).

We do not have Per.guin(Tweety) ý- Fly(Tweety), because of the constraint C.

4 Probabilities, Constraints, and Default Models

One of the most imemsting ramifications of our approach is that we can use defaults to generate degrees of belief or
subjective probabiUdes of various logical statements. By "subjective probability" we mean an analogue of the usual
probability, a number that would be assigned to a statement by a particular agent or subject, given a default system and
some basic consu-its on the world. Let us illustrate with an example of Poole (9].

4.1 Poole's anomaly
Assume that there we exactly three mutually exclusive types of birds: penguins, hummingbirds, and sandpipers. It is
known that penguins don't fly, that hummingbirds are not big, and that sandpipers don't nest in uees. Now suppose we
want to assert that the typical bird flies. Since we only speak of birds, we can do this with the precondition-free "open
default" : fly(z)

CIbis notation is of course a schema for the model-theoretic defaults in the default information structure to be given
below.) We would also like to say that the typical bird is (faiuly) big, and that it nests in a tree. Similar defaults awe
constructed to express these beliefs.

The" paradox" is that it is impossible now to believe that Tweety. the typical bird, flies. To see why, let us
formalize the problem morm fully in our fist-order language. Let C, be the obvious first-order sentence asserting that
every individual is one of the three types of birds, and ta no individual is of more than one type. Let C2 be the
conjunction of three sentences expressing abnormalities. One of these is, for example,

VW(Penguin(z) - -.fy(x)).

264

Lot the bockroiuud constraint C be Ci A C2.
The deftults most be given in the semantics. Liet M be a Mite aet, and consider die firstocrder default stuctwtue

A with precondition-free defaults

St need only precoodition-free defaults, becmase we only speak albowt birds. Further. we need no inforis meationing
penguins, or my of fte other species. The constraints can still operate.

We man thal if M has n elements, then there we 3" exionsions of fthemapty set (which is in fac the least
model of t). Tis is becauseany extension will include, for esci bird n 4E M. exactly two, out of the thrme infons
(fly. m; 1), (big, m.; 1)), (tree, m; 1)). The extension cannot conai all throe infons, because the constraints rule
tda out. So each of ni birds has three choices, leading to 3" extensiois.

One such extenasion is
Itbig, Mn; I)) : in E M) U I(((tee, Mn; 1)) in M M)

which omits any inflons of the fA= ((fly, im; 1)). This extension is one where no birds fly, where all birds are penguin-
like. So now if Tweety is a constant of our language, then the formiula Fl~Fweey) is not a nonmonotonic consequence
of the "true formula hue, whose minimal model is the empty set. Further, if we move to the situation of sieventeen
bird types, each with its own distinguishing feature, we still have the case that Tweety cannot be believed to be flying.
Poole suggests that this raises a problem for most default reasoning systems.

4.2 A probabilistic solution

We now contend thas the, problem is not so severe. Notice that it is only in 3"- extensions that Tweety does not fly.
This is becaus in an extension where Tweety does not fly, the infons involving Tweety must assert don he is big and
lives in a otre. Tweety thus only has one non-flying choice. The other n - I birds have the same three choices as
before. It seems therefore truthful to say that with probability (311 - 3n1')/3n . 2/3, Tweety believably doies fly.
Moreover, imagine a scenario with seventeen mutually exclusive bird types, the same kinds of exceptions for each
type, and defaults for all of she types. Then we would get that Tweezy flies with probability 16/17.

We use Othis example to define our notion of subjective probability:

Definition 4.1 Let ip be a sentence of positive first-order logic. Assume that relative to a constrairu C. V has minimal
models in a structure M with n elements. Then the conditional subjective probability Pr([Ib I io]; ni, C) is defined to
be the quantity

N 8E U(,R) cardle: s 6 e)

where N is the cardinality of U(,p).

Example. Referring to the case of Tweety above, we have

Pr([Fly(Tweety~) ItQ; na, C) = 2/3.

Note the non-dependence on ni. We conjecture that there is in fact a limit law, as in the case of 0- 1 laws for first-order
systems, in operation here. (See the survey by Compton [3) for a general introduction to 0- 1 laws.)

Our definition bears a strong resemblance to the noton defined by Bacchus, Grove, Halpern, and Koilla (1). Their
definition of the conditional probability of a statement 0' given another statement (p. though, is not made with refer-
ence to a given default information system. Instead, defaults we "translated" into a special logic for reasoning about
statistical information. (For examnple, one can say that the proportion of flying birds out of all birds is approximately
.9). Then, fte transated default statemenits, and the given formulas p and 04 are given a conditional probability in a
standard first-order structure, much as in the case of 0-1 laws2. Our corresponding "translation" of default statements
is into a systemn of default rules, just as in Reiter's formulation.

Our semantics also contrasts with ftht of BGHK in that is looks at pmlia worlus as well as total ones, and can
assign probabilities to a statement's not being resolved one way or anothr.

2Gruve. Halpem, and Kollef prove lhnit laws for their win ofi aw ditiorad prdabiity in 15).

265

We illustrase tk role of partial models, and the role played by the class U(po). with an example m involving
consuaints or ddmalt rules at all.

Consider the "evidence" , a (3z)P(z), where P is same unary predirat. What is the degree of belief in
P(tweeil), given;? Assume a set M with n individuals. Prom the definitions, we see that U(k) a consist of
any nonempty subset of the set

{((p, m; l)) 1 m E M).

ThusN a2" - li,md

PreP((Tweety) I VJ;n,, t)- czrds Ee U() I ((P,tweety;, 1)) E 8).

The7 e r 2-I ses of infons containing the desired one, so tdto our answer is

I

2- l/2"-I

which is close to 1/2 for large n.
This result arees with the BGHK definition of conditional probability, but the analogous result for the negative

case does not. In the standard case, every question is settled in a structure. But in our case, we do not have this. For
example --P(Tweet) is not settled in any situation in U(,p) above, because ((P, m; 0)) f U(V,) for any m. Thus we
get

Pr([-'P(Twceet) b,); n, t) = 0

whereas BH would get a number slightly less than 1/2.
Finally, our semantics avoids certain "dependencies on language." Referring to Poole's example, noace that if

we change our set of predicates and constraints to the case of seventeen bird types, but retain the rule system for three
types, then we still get the same degree of belief (2/3) for Tweety's flying. The BGHK semantics does not have this
property. In our case, it is as if, when we expand our universe to the case of seventeen types, we have not yet learned
the new rules for building models of those types of birds.

As a general comparison of our method with that of BGHK, it seems fair to say that we are approaching the
problem of re-creating direct inference (reasoning logically from statistical information) by using synthetic rule-based
systems with constraints, whereas BGHK are concerned with the analytic reasons for the rules in the first place. In any
case, the connections deserve futher exploration.

5 Conclusion

We hope to have shown in this paper some of the uses of constaints in non-monotonic rule-based reasoningM embodied
in default model theory. Themr should be many more interesting applications of our technique. One such may be to
logic programming and CLP itself. The connections between default logic and logic programs with negaiom as failure
are well known. Our research indicates that default rules should be regarded as algorithms to construct models. If this
is so, then by analogy, logic programs should be constructing models too. (We think that this is exactly tf new view
of constraint programming.) Then, we would need a new logic to reason about the worlds (in fact partial worlds) built
by a logic program. which might be rechristened a "model gemator." But this is exactly the view of denotational
semantics and standard logics of programs: programs ar inntepreted model-theoretically, and a specification logic is
used to reason about the models that have been "built" by the program. These analogies and questions are what we
want to work on in the near future. We hope to have awakened interest in the topic for the practitioners of constraint
programming.

References
[1] F. Bacchus, A. Grove, J. Halpern, and D. Koller. Statistical foundations for default reasoning. UCAI 1993, to

appear.

[2] Jon Barwise. The Situation in Logic. 17. Center for Study of Language and Information, Stanford, California,
1989.

266

[3) K..J. Compton. 0- 1 laws in logic =Wd cmbinmmics. In I. Rival, editor. NATO Adv. Stady l•na. on AIorwu and
Order. pages 353-383. 1988.

(4) D. W. Edwiginon. Reasoning i**h imcalrete Wiormadion. Research Noses in Artificial Inselligence. Morigp
Kaufman. 1988.

(5] A. Orove, J. Halpen, and D. Koll. Asympbotc conditional probabilities for flrst-order logic. In Proc. 241h
ACM Swtp. on Theory of Computing,pages 294-305, 1992.

(6) S. Krmu, D. Lehmann, and M. Magidor. Nowmonotnic reasoning, prefwerntial models, and cumulative logics.

Artdfcial Intelwigence. 44:167-207,1990.

(7] H. J. Levesque. AD i know: A study in amuoepistemic logic. ArificialInteligence. 42:263-309.1990.

[81 W. Marek, A. Nerode, and J. Ranmel. A theory of nonminnotonic rule systems. In Proceedings of 5th IEEE
Symposwm on Logic in Compsaer Science, pages 79-94,1990.

[9) D. L. Poole. What the lonery paradox tells us about default reasoning. In Proceedings of Firs; AnwW Conference
on Knowledge Representation. Morgan Kaufmann, 1989.

(10] Raymond Reiter. A logic for default reasoning. Arificial Intelligence, 13:81-132, 1980.

111) V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint programming. In
Proceedings of POPL 1991,1991.

(12] Guo-Qiang Zhang. Logic of Domains. Birkhauser, Boston, 1991.

267

The SkyBlue Constraint Solver and Its Applications

Michael Sannella
Department of Computer Science

and Engineering, FR-35
University of Washington

Seattle, WA 98195
sannella@cs.washington.edu

Abstract
The SkyBlue constraint solver is an efficient incremental algorithm that uses local propagation to

maintain sets of required and preferential constraints. SkyBlue is a successor 4o the DeltaBlue algorithm,
which was used as the constraint solver in the ThingLab II user interface development environment.
Like DeltaBlue, SkyBlue represents constraints between variables by sets of short procedures (methods)
and incrementally resatisfies the set of constraints as individual constraints are added and removed.
DeltaBlue has two significant limitations: cycles of constraints are prohibited, and constraint methods
can only have a single output variable. SkyBlue relaxes these restrictions, allowing cycles of constraints
to be constructed (although SkyBlue may not be able to satisfy all of the constraints in a cycle) and
supporting multi-output methods. This paper presents the SkyBlue algorithm and discusses several
applications that have been built using SkyBlue.

1 Introduction

The DeltaBlue algorithm is an incremental algorithm for maintaining sets of required and preferential con-
straints (constraint hierarchies) using local propagation (4, 5, 9]. The ThingLab II user interface development
environment was based on DeltaBlue, demonstrating its feasibility for constructing user interfaces [51. How-
ever, DeltaBlue has two significant limitations: cycles in the graph of constraints and variables are prohibited
(if a cycle is found, an error is signaled and the cycle is broken by removing a constraint) and constraint
methods can only have one output variable.

The SkyBlue algorithm was developed to remove these limitations. Even though it is not always possible
to solve cycles of constraints using local propagation, SkyBlue allows constructing such cycles. SkyBlue
cannot satisfy the constraints around a cycle, but it correctly maintains the non-cyclic constraints elsewhere
in the graph. In some situations it may be possible to solve the subgraph containing the cycle by calling
a more powerful solver. Future work will extend SkyBlue to call specialized constraint solvers to solve the
constraints around a cycle, and continue using local propagation to satisfy the rest of the constraints.

SkyBlue also supports constraints with multi-output methods, which are useful in many situations. For
example, suppose the variables X and Y represent the Cartesian coordinates of a point, and the variables
p and 0 represent the polar coordinates of this same point. To keep these two representations consistent,
one would like to define a constraint with a two-output method (X, Y) -- (pcos 0, psin 0) and another two-
output method in the other direction (p, 0) .- (/V- 2 + Y2 , arctan(Y, X)). Multi-output methods are also
useful for accessing the elements of compound data structures. For example, one could unpack a compound
CartesianPoint object into two variables using a constraint with methods (X, Y) -- (Point.X, Point.Y)
and Point - CreatePoint(X,Y).

Support for multi-output methods introduces a performance issue. It has been proved that supporting
multi-output methods is NP-complete [5]. In actual use, the worst-case time complexity has not been a
problem. Both DeltaBlue and SkyBlue typically change only a small subgraph of the constraint graph
when a constraint is added or removed so the actual performance is usually sub-linear in the number of
constraints. Over the same types of constraint graphs that DeltaBlue can handle (no cycles, single-output
methods), SkyBlue has been measured at about half the speed of DeltaBlue. In the future SkyBlue may be

268

extended to detect when the constraint graph contains no cycles or multi-output methods and achieve the
speed of DeltaBlue in this case.

SkyBlue is currently being used as the constraint solver in several applications (see Section 6). Sky-
Blue implementations are available from the author. Detailed information on SkyBlue, including complete
pseudocode, is available in a technical report [7).

2 Method Graphs

A SkyBlue constraint is represented by one or more methods. Each method is a procedure that reads the
values of a subset of the constraint's variables (the method's input variables) and calculates values for the
remaining variables (the method's output variables) that satisfy the constraint. For example, the constraint
A + B = C could be represented by three methods: C - A + B, A - C - B, and B - C - A. If the value
of A or B were changed, SkyBlue could maintain the constraint by executing C - A + B to calculate a new
value for C.

V2 V

¥ 1C2 V 1 C1 C2 V4

(a).. -(b)

Figure 1: (a) A method graph with an unenforced constraint (C5), a method conflict (at V5), and a directed
cycle (between C1 and C2). (b) Another method graph for the same constraints where all of the constraints
can be satisfied.

To satisfy a set of constraints, SkyBlue chooses one method to execute from each constraint, known as
the selected method of the constraint. The set of constraints and variables fornm an undirected constraint
graph with edges between each constraint and its variables. The constraint graph, together with the selected
methods, form a directed method graph. In this paper, method graphs are drawn with circles representing
variables and squares representing constraints (Figure 1). Lines are drawn between each constraint and its
variables. If a constraint has a selected method, arrows indicate the outputs of the selected method. If a
constraint has no selected method, it is linked to its variables with dashed lines. Small diagrams beneath
eath constraint square indicate the unselected methods for the constraint (if any). These diagrams are
particularly useful when a constraint doesn't have methods in all possible directions or has multi-output
methods (such as Cl).

The following terminology will be used in this paper. If a constraint has a selected method in a method
graph the constraint is enforced in that method graph, otherwise it is unenforced. Assigning a method as the
selected method of a constraint is known as enforcing the constraint. Assigning no method as the selected
method of a constraint is known as revoking the constraint. A variable that is an output of a constraint's
selected method is determined by that constraint. A variable that is not an output of any selected method is
undetermined. Following the selected method's output arrows leads to downs 2ream variables and constraints.
Following the arrows in the reverse direction leads to upstream variables and constraints.

If a method graph contains two or more selected methods that output to the same variable, this is
a method conflict. In Figure la, there is a method conflict between the selected methods of C3 and C4.
SkyBlue prohibits method conflicts because they prevent satisfying both constraints simultaneously. If we
satisfy C3 by executing its selected method (setting V5), and then satisfy C4 by executing its selected
method (again setting V5), then C3 might no longer be satisfied. If a method graph has no method conflicts
and no directed cycles, then it can be used to satisfy the enforced constraints by executing the selected

269

methods so any determined variable is set before it is read (i.e., executing the methods in topological order).
For example, Figure lb shows a method graph for the same constraints where all of the constraints can be
satisfied by executing the selected methods for Cl, C2, C3, C4, and C5, in this order. The method graph
specifies how to satisfy the enforced constiaints, regardless of the particular values of the variables.

If a method graph contains directed cycles, such as the one between Cl and C2 in Figure la, it is not
possible to find a topological sort of the selected methods. In this case, SkyBlue sorts and executes only the
selected methods upstream of cycles. Any methods in a cycle or downstream of a cycle are not executed
and their output variables are marked to specify that their values do not necessarily satisfy the enforced
constraints. If a cycle is later broken, the methods in the cycle and downstream are executed correctly.
SkyBlue will be extended in the future to call more powerful solvers to find values satisfying a cycle of
constraints and then propagate these values downstream.

3 Constraint Hierarchies

An important property of any constraint solver is how it behaves when the set of constraints is overconstrained
(i.e., there is no solution that satisfies all of the constraints) or underconstrained (i.e., there are multiple
solutions). If the solver is maintaining constraints within a user interface application, it is not acceptable
to handle these situations by signaling an error or halting. The constraint hierarchy theory presented in [2]
provides a way to specify declaratively how a solver should behave in these situations. A constraint hierarchy
is a set of constraints, each labeled with a strength, indicating how important it is to satisfy each constraint.'
Given an overconstrained constraint hierarchy, a constraint solver may leave weaker constraints unsatisfied
in order to satisfy stronger constraints. If a hierarchy is underconstrained, the solver can choose any solution.
The user can control which solution is chosen by adding weak stay constraints to specify variables whose
value should not be changed.

C1 C2 C3 C4
week V1 Wbong V2 medium V3 week

(a) A non-LGB method graph.

C1 C2 CS C4
sk V1 eWong V2 nmedium V3 week

(b) - - " " Another non-LGB method graph.

Ci C2 C3 C4
week VI srong V2 amdium V3 week

(c) " An LGB method graph.

C1 C2 C3 C4
weak V1 .,ong V2 medum V3 week Another LGB method graph for

(d) -- "' the same constraints.

C1 C2 CS CV(e) d e"W v1 .,ons V2 wadum VS week This is the only LGB method
(e) * fw- -30- & -- graph if Cl has medium strength.

Figure 2: LGB and non-LGB Method Graphs.

The SkyBlue solver uses the constraint strengths to construct locally-graph-better (or LGB) method
graphs [5]. A method graph is LGB if there are no method conflicts and there are no unenforced constraints
that could be enforced by revoking one or more weaker constraints (and possibly changing the selected

'In this paper, strengths will be written using the symbolic names required, strong. medium, and weak, in order from

strongest to weakest.

270

methods for other enforced constraints with the same or stronger strength).2 For example, consider the
method graph in Figure 2a. This graph is not LGB because the strong constraint C2 could be enforced
by choosing the method that outputs to V2 and revoking the sodium constraint C3, producing Figure 2b.
Actually, this method graph is not LGB either since C3 could be enforced by revoking C4, producing
Figure 2c. This method graph is LGB since the only unenforced constraint (C4) cannot be enforced by
revoking a weaker constraint.

There may be multiple LGB method graphs for a given constraint graph. Figure 2d shows another LGB
method graph which is neither better nor worse than Figure 2c. Given these constraints, SkyBlue would
construct one of these two method graphs arbitrarily. The constraint strengths could be modified to favor
one alternative over the other. For example, if the strength of CI was changed to sedium, the only LGB
method graph would be the one in Figure 2e. One way for the programmer to control the method graphs
constructed is to add stay constraints that have a single null method with no inputs and a single output.
A stay constraint specifies that its output variable should not be changed. A similar type of constraint is a
set constraint, which sets its output to a constant value. Set constraints can be used to inject new variable
values into a constraint graph. In Figure 2, C1 and C4 are stay or set constraints.

Reference [2] presents several different ways to define which variable values "best" satisfy a constraint
hierarchy. The concept of read-only variables extends this theory to constraints that may not be able to
set some of their variables, such as SkyBlue constraints without methods in all possible directions. For
many constraint graphs, LGB method graphs compute "locally-predicate-better" solutions to the constraint
hierarchy (defined in Reference [2]). Reference [5] examines the relation between LGB method graphs and
locally-predicate-better solutions.

4 The SkyBlue Algorithm

The SkyBlue constraint solver maintains the constraints in a constraint graph by constructing an LGB
method graph and executing the selected methods in the method graph to satisfy the enforced constraints.
Initially, the constraint graph and the corresponding LGB method graph are both empty. SkyBlue is
invoked by calling two procedures, add-constraint to add a constraint to the constraint graph, and
remove-constraint to remove a constraint. As constraints are added and removed, SkyBlue incremen-
tally updates the LGB method graph and executes methods to resatisfy the enforced constraints.

The presentation of SkyBlue is divided into several sections. Sections 4.1 and 4.2 present an overview of
add-constraint and remove-constraint. Section 4.3 describes how a constraint is enforced by constructing
a method vine, the core of the SkyBlue algorithm. The algorithm described in these sections produces correct
results, but its performance suffers as the constraint graph becomes very large. Section 5 presents several
techniques used in the complete algorithm that significantly improve the efficiency of SkyBlue for large
constraint graphs. More detailed information on SkyBlue, including complete pseudocode for the algorithm,
is available in a technical report [7].

4.1 Adding Constraints

When a new constraint is added to the constraint graph it may be possible to alter the method graph to
enforce it by selecting a method for the constraint, switching the selected methods of enforced constraints
with the same or stronger strength, and possibly revoking one or more weaker constraints. This process
is known as constructing a method vine or mvine (described in Section 4.3). add-constraint adds a new
constraint cn to the constraint graph by performing the following steps:

1. Add cn to the constraint graph (unenforced) and try to enforce cn by constructing an mvine. If it is
not possible to construct such an mvine, leave cn enenforced and return from add-constraint. In this
case, the method graph is unchanged (it is still LGB).

2. Repeatedly try to enforce all of the unenforced constraints in the constraint graph by constructing
mvines until none of the remaining unenforced constraints can be enforced. Note that each time an

2 Reference [5] defines "locally-graph-better" such that directed cycles are prohibited. In this paper, the definition of LGB
is modified so LGB method graphs may include directed cycles.

271

unenforced constraint is successfully enforced, one or more weaker constraints may be revoked. These
newly-unenforced constraints must be added to the set of unenforced constraints.

3. Execute the selected methods in the method graph to satisfy the enforced constraints (as described in
Section 2).

The second step must terminate because there are a finite number of constraints. Each time an un-
enforced constraint is enforced, one or more weaker constraints may be added to the set of unenforced
constraints. These additional constraints may be enforcible, adding still weaker constraints to the set of
unenforced constraints, but this process cannot go on indefinitely. Eventually the process will stop with a
set of unenforcible constraints. When the second step terminates the method graph must be LGB, since no
more mvines can be constructed.

As an example, suppose that add-constraint has just added C2 to the constraint graph and the current
method graph is shown in Figure 2a. One way that an mvine could be constructed is by enforcing C2 with
the method that outputs to V2 and revoking C3 (Figure 2b). Given this method graph, the second step
would try constructing an mvine to enforce C3, possibly by revoking C4 (Figure 2c). At this point it is
not possible to construct an mvine to enforce C4 so the second step terminates. This method graph is
LGB. Alternatively, if the first mvine had been constructed by revoking C1 then the LGB method graph of
Figure 2d would have been produced immediately and the second step would not have been able to enforce
C1.

4.2 Removing Constraints

remove-constraint is very similar to add-constraint. When an enforced constraint is removed this may
allow some unenforced constraints to be enforced, which leads to the same process of repeatedly constructing
mvines. remove-constraint removes a constraint cn from the constraint graph by performing the following
steps:

1. If cn is currently unenforced, remove it from the constraint graph and return from remove-constraint.
Removing an unenforced constraint cannot make any other constraints enforcible so the method graph
is still LGB.

2. Repeatedly try enforcing all of the unenforced constraints in the constraint graph by constructing
mvines (adding revoked constraints to the set of unenforced constraints) until none of the unenforced
constraints can be enforced. As in add-constraint this step eventually terminates with an LGB
method graph.

3. Execute the selected methods in the method graph to satisfy the enforced constraints (as described in
Section 2).

4.3 Constructing Method Vines

The SkyBlue algorithm is based on attempting to enforce an unenforced constraint by changing the selected
methods of constraints with the same or stronger strength and/or revoking one or more constraints with
weaker strengths. There are many ways this could be implemented, including trying all possible assignments
of selected methods withnut method conflicts. The technique used in SkyBlue, known as constructing a
method vine (or mvine), uses a backtracking depth-first search.

An mvine is constructed by selecting a method for the constraint we are trying to enforce (the root
constraint). If this method has a method conflict with the selected methods of other enforced constraints,
we select new methods for these other constraints. These new selected methods may conflict with yet
other selected methods, and so on. This process extends through the method graph, building a "vine" of
newly-chosen selected methods growirg from the root constraint. This growth process may terminate in the
following ways:

1. If a newly-selected method in the mvine outputs to variables that are not currently determined by any
constraint, then this branch of the mvine is not extended any further.

272

2. If a newly-selected method in the mvine conflicts with a selected method whose constraint is weaker than
the root constraint, then the weaker constraint is revoked, rather than attempting to find an alternative
selected method for it. As a result, all of the methods in the mvine will belong to constraints with
equal or stronger strengths than the root constraint.

3. If an alternative selected method is chosen for a constraint and there is a method conflict with another
selected method in the mvine, then we cannot add this method to the mvine and must try another
method. If all of the methods of this constraint conflict with other selected methods in the mvine, then
the mvine construction process backtracks: previously-selected methods are removed from the mvine
and the mvine is extended using other selected methods for these constraints. If no method can be
chosen for the root constraint that allows a complete conflict-free mvine to be constructed, then the
root constraint cannot be enforced.

Figure 3 presents an example demonstrating the process of constructing an mvine. A complete mvine
is a connected subgraph of the method graph. An mvine is not necessarily a tree: separate branches may
merge and it may contain directed cycles. If all of the constraint methods in the mvine have a single output,
then an mvine will have the structure of a single stalk leading from the root constraint through a series of
other constraints with changed selected methods. If there is a method with multiple outputs in the mvine,
the mvine will divide into multiple branches with one branch for each output. The different branches cannot
be extended independently since methods in different branches cannot output to the same variables. The
backtracking search must take this into account by trying all possible combinations of selected methods for
the constraints in the different branches.

5 Performance Techniques

The SkyBlue algorithm described in Section 4 works correctly, but its performance suffers as the constraint
graph becomes very large. This happens because larger constraint graphs may contain greater numbers of
unenforced constraints that SkyBlue has to try enforcing, and each attempt to construct an mvine may
involve searching through more enforced constraints. The following subsections describe techniques used in
SkyBlue to improve its performance with larger constraint graphs.

5.1 The Collection Strength Technique

The initial SkyBlue method graph is empty and LGB. Every call to add-constraint or remove-constraint
leaves an LGB method graph. Therefore, the current method graph must be LGB whenever add-constraint
or remove-constraint is called. This fact can be used to avoid collecting and trying to enforce some of the
unenforced constraints.

Whenever add-constraint adds a constraint cn, it is impossible for it to enforce any unenforced
constraints with the same or stronger strength than cn, other than cu itself. If it was possible to enforce
any such constraint after cn was added, then it would have been possible to enforce it before cn was added
and the previous method graph would not have been LGB.

Whenever remove-constraint removes an enforced constraint cn, it is impossible to enforce any un-
enforced constraints that are stronger than cn. If it was possible to enforce any stronger constraint after
cn was removed, then it would have been possible to enforce it before ca was removed and the previous
method graph would not have been LGB. Note that unlike add-constraint, removing a constraint may
allow unenforced constraints with the same strength to be enforced, as well as weaker ones.

5.2 The Local Collection Technique

If the method graph is LGB and a constraint is added or removed from the constraint graph, any unenforced
constraints in a subgraph unconnected to the added or removed constraint clearly cannot be enforced. It is
possible to be more selective: Whenever add-constraint is called to add a constraint cn and an mvine is
successfully constructed to enforce it, it is sufficient to collect unenforced constraints that constrain variables
downstream in the method graph from all of the "redetermined variables" whose determining constraint

273

01 as v I

es- Suppose we start with this method graph, and we
-3 want to enforce the strong constraint CI by build-

Vs ing an mvine.

GI4 vi .mV

First, Cl's selected method is set to its only method
so it determines VI.

- This causes a method conflict with C2 so we have

C, to enforce C2 with its other method.

ON VI v u vs This causes method conflicts with C3 and C4. Sup-
*u mpose we process C4 first: we can simply switch its

selected method so it determines V5. V5 is not de-
VA w O termined by any other constraints so we don't have

to extend this branch of the mvine.
a&" W I We have to process C3 by choosing another method.

SSuppose we try the one that determines V2. This

V• is not permitted because it causes a method conflict
V, Wk v6 with C2, which is already in the mvine.

s0" VI V2 N" v& Therefore, we have to backtrack and try another

3- method for C3. Suppose we now try the method
-S that determines V4 (causing a method conflict with

VA We* VO C5).

a."" VI V2 Now we need to handle C5. Because it is weaker

C3 *0 than Cl we don't have to find an alternative
v3 vS method but can simply revoke it, producing this

_ final method graph.

Figure 3: Constructing an mvine. Methods in the mvine are drawn with thicker lines.

has changed. Whenever remove-constraint is called to remove a constraint en, it is sufficient to collect
unenforced constraints that constrain variables downstream from the variables previously determined by cn.

Whenever SkyBlue successfully constructs an mvine, additional unenforced constraints can be added to
the set of collected unenforcec constraints by scanning downstream from the newly-redetermined variables.
As each of these constraints is processed (it is enforced, or it is determined that it cannot be enforced) it
can be removed from the set. When the set is empty there are no more unenforced constraints that can be
enforced.

A similar technique can be used to reduce the number of methods executed. Rather than executing the
selected methods of all enforced constraints in the constraint graph, it is only necessary to collect and execute
the selected methods of newly-enforced constraints, and methods downstream of redetermined variables.

274

5.3 Walkabout Strengths

An mvine is constructed by repeatedly choosing a new selected method for a constraint and then trying to
extend the mvine from the outputs of this method. It will be possible to complete the mvine below these
outputs only if the mvine eventually encounters undetermined variables or constraints weaker than the root
constraint, and there are no method conflicts between different branches of the mvine. If SkyBlue could
predict that one of these conditions was untrue then the selected method could be rejected immediately
without trying to extend the mvine.

The DeltaBlue algorithm predicts whether a constraint can be enforced by using the concept of walkabout
strengths [4]. A variable's walkabout strength is the strength of the weakest constraint that would have to
be revoked to allow that variable to be determined by a new constraint. This could be the strength of
the constraint that currently determines the variable or the strength of a weaker constraint elsewhere in
the method graph that could be revoked after switching the selected methods of other constraints. If the
variable is not currently determined by any constraint then the walkabout strength is defined as weakest,
which is a special strength weaker than any constraint. A variable will also have a walkabout strength of
weakest if it can be left undetermined by switching selected methods without revoking any constraints.3

One important property of DeltaBlue's walkabout strengths is that they can be calculated using local
information. The walkabout strength of a variable determined by a constraint can be calculated from the
constraint's strength, its methods, and the walkabout strengths of the rest of the constraint's variables. If
the method graph has no cycles (required for DeltaBlue), all of the variable walkabout strengths can be
updated by setting the walkabout strengths of all undetermined variables to weakest and processing each
enforced constraint in topological order to set the walkabout strengths of the determined variables.

02V2 niqukred V4 C4

cl e $ooý ~ V

Wed" sd wsh"I

Figure 4: Method graph with a possible conflict.

There is a problem with using walkabout strengths in SkyBlue because methods may have multiple out-
puts. Consider the method graph of Figure 4. DeltaBlue would correctly calculate the walkabout strengths
of V2-V6 to be weakest. But what about VI? The walkabout strengths of V2 and V3 imply that V1
should have a walkabout strength of weakest, since the alternative (multi-output) method for Cl can be
chosen that outputs to V2 and V3, which both have weakest walkabout strengths. However, it is not possi-
ble for a method to set both V2 and V3 simultaneously, without revoking one of the required constraints.
Simply switching methods would lead to a method conflict with both C4 and C5 determining V6. However,
this cannot be detected without exploring the graph, which would remove one of the benefits of walkabout
strengths (i.e., they can be calculated using local information).

In SkyBlue, the definition of walkabout strength is modified. A variable's walkabout strength is defined
as a lower bound on the strength of the weakest constraint in the current method graph that would need to
be revoked to allow the variable to be determined by a new constraint. SkyBlue uses the modified definition
of walkabout strengths to reject methods when constructing an mvine: if any of the outputs of a method
have walkabout strengths equal to or stronger than the root constraint, then it is not possible to complete
the mvine using this method. The use of walkabout strengths cannot eliminate all of the backtracking during
mvine construction but it can reduce it considerably.

Whenever SkyBlue successfully constructs an mvine it modifies the method graph, so the walkabout
strengths must be updated to correspond to the new method graph. This is done by processing all of the

3 Another interpretation of the veakest strength is that each variable has an implicit stay constraint with a strength of
weakest, which specifies that the variable value doesn't change unless a stronger constraint determines it.

275

enforced constraints in the constraint graph (in topological order) and recalculating the walkabout strengths
of the determined variables. It is possible to apply the technique from Section 5.2 in this situation by
processing only the enforced constraints downstream of the redetermined variables.

SkyBlue uses the modified definition of walkabout strengths to simplify the processing of cycles. If the
method graph contains directed cycles, it is not possible find a topological sort for the constraints. The
walkabout strengths for variables in the cycle could be calculated by examining all of the constraints in
the cycle, but this would require non-local computation. Instead, SkyBlue chooses a selected method in
the cycle and calculates the walkabout strengths of its outputs as if all of its input variables in the cycle
had walkabout strengths of weakest. This is guaranteed to be a correct lower bound. This simplifies the
updating of walkabout strengths at the cost of increasing the search when constructing an mvine, because
the walkabout strengths in a cycle and downstream may be weaker than necessary.

5.4 Comparing Performance Techniques

For regression testing and performance tuning, a random sequence of 10000 calls to add-constraint and
ronove-constraint was generated and saved. Using this sequence it is possible to measure how the perfor-
mance of SkyBlue is improved by the performance techniques described above.

local walkabout time number mvines number
collection strengths -(seconds) attempted I constructed backtracks

on on 25.3 24222 5840 12748
on off 47.2 24222 5840 196012
off on 44.1 77354 5826 36262
off off 125.5 77354 5826 571534

Figure 5: Measurements collected while executing a sequence of 10000 constraint operations in SkyBlue with
different performance techniques enabled.

Figure 5 shows the timing results when executing the sequence with four different configurations of the
SkyBlue algorithm. The local collection column specifies whether the technique from Section 5.2 was used to
collect constraints local to the added or removed constraint when enforcing and executing methods, versus
processing all of the constraints in the constraint graph. The walkabout strengths column specifies whether
variable walkabout strengths were used to improve mvine searches and updated whenever an mvine was
constructed, as described in Section 5.3. The times in the third column show that SkyBlue is most efficient
with both techniques enabled, about half the speed with either technique disabled, and exceedingly slow
with neither of the techniques enabled. The collection strength technique of Section 5.1 was enabled in all
four cases. Disabling this technique did not change the times as much as the other two techniques.

These timings are explained by the remaining three columns, which record the number of times SkyBlue
attempted to enforce a constraint by constructing an mvine, the number of times the mvine was successfully
constructed, and the number of times backtracking occurred while trying to construct an mvine. These
timings can be interpreted as follows: the local collection technique saves time by reducing the number of
attempts to construct mvines and the number of constraint methods executed. The walkabout strength
technique saves time by reducing the amount of backtracking when constructing an mvine. This particularly
reduces backtracking (and time) when there are numerous unsuccessful mvines, such as when the local
collection technique is disabled.

6 SkyBlue Applications

SkyBlue is currently being used as the constraint solver in Multi-Garnet [8], a package that extends the
Garnet user interface construction system [61 with support for hierarchies of multi-way constraints. SkyBlue
is also currently being used as the constraint solver in an implementation of the Kaleidoscope language [3]
and as an equation manipulation tool in the Pika simulation system [1].

276

6.1 Multi-Garnet

Garnet is a widely-used user interface toolkit built on Common Lisp and X windows [6]. However, Garnet
only supports one-way constraints, all of which must be required (no hierarchies). The Multi-Garnet package
uses the SkyBlue solver to add support for multi-way constraints and constraint hierarchies to Garnet [8].

1 00 law"40 0
6oe 00 0 e 00

0S8 00 600.

@0 00 0•o 0

0 0 2±4W50 A 12L46 0 so. 0t?
O 0

on 1 .R 0O0 00 0
o 0

Om A 14AD an A 61".

Figure 6: Three views of a scatterplot built within Multi-Garnet: The initial scatterplot, the initial scatterplot
after moving the X-axis, and the initial scatterplot after scaling the point cloud by moving a point.

Figure 6 shows three views of a graphic user interface constructed in Multi-Garnet: a scatterplot dis-
playing a set of points. SkyBlue constraints are used to specify the relationship between the screen position
of each point, the corresponding data value, and the positions and range numbers of the X and Y-axes. As
the scatterplot points and axes are moved with the mouse, SkyBlue maintains the constraints so that the
graph continues to display the same data.

The scatterplot application exploits many of the features of SkyBlue. SkyBlue resatisfies the constraints
quickly enough to allow continuous interaction. The different interactions (move axis, move point cloud,
scale point cloud, etc.) are defined by adding weak stay constraints to specify variables that should not be
changed. Multi-way constraints allow any of Lhe scatterplot points to be selected and moved, changing the
axes data. This changes the positions of the other points, reshaping or moving the point cloud. Finally, the
scatterplot uses constraints with multi-output methods, such as a constraint with three two-output methods
that maintains the relationship between the X-coordinates of the ends of the X-axis, the range numbers
displayed at the ends of the axis, and the scale and offset variables used to position points relative to the
axis. It would be difficult to build this application in Garnet without maintaining some of the relationships
using other mechanisms in addition to the Garnet constraint solver.

6.2 The Pika Simulation System

SkyBlue is being used as in equation manipulation tool in a version of the Pika simulation system [1].
Pika constructs simulations in domains such as electronics or thermodynamics by collecting algebraic and
differential equations representing relationships between object attributes. For example, in a simulation
of an electronic circuit, one equation would relate the voltage across and the current through a particular
resister. Pika processes these equations and passes them to a numerical integrator that calculates how the
object attributes change over time.

Pika uses SkyBlue to manipulate the collected equations. Each equation is expressed as a SkyBlue
constraint with one method for each possible output variable. SkyBlue chooses one method from each
constraint so that no two constraints select the same output variable, and topologically orders the selected
methods. Pika uses the ordered list of selected methods to set up the numerical integrator. Note that Pika
does not use SkyBlue to maintain the constraints (equations) directly, but rather uses it to process the
equations for the numerical integrator, which will maintain the equations during the simulation.

During equation processing, Pika takes advantage of SkyBlue's support for constraint hierarchies to
influence the methods selected. There may be many possible ways to directionalize a given set of equations,
leaving different sets of variables constant. Within the simulation, it may be preferable to keep some variables
constant over others. This is represented by adding weak stay constraints to variables that should remain
constant. SkyBlue will choose an equation ordering that leaves these variables constant, if possible.

277

Pika uses SkyBlue's facilities for incrementally adding and removing constraints to update the sorted list
of equation methods as equations are added and removed. This may occur while the simulation is executing.
For example, when the temperature of a container of water increases and it starts to boil, a different set of
equations describing its behavior is activated.

Often there are cycles in the sets of selected methods produced by SkyBlue. Currently, Pika handles
these cycles by extracting the equations in the cycle, and passing them to an symbolic mathematics system
which tries to transform them to a non-cyclic set of equations. Pika replaces the cycle of equations by
the reduced equations, SkyBlue (incrementally) updates the constraint graph, and Pika processes the new
ordered list of selected methods.

Acknowledgements

Thanks to Alan Borning, Ralph Hill, and Brad Vander Zanden for useful discussions and comments on earlier
versions of this paper. This work was supported in part by the National Science Foundation under Grants
IRI-9102938 and CCR-9107395.

References
[1] Franz G. Amador, Adam Finkelstein, and Daniel S. Weld. Real-Time Self-Explanatory Simulation. In

Proceedings of the National Conference on Artificial Intelligence, 1993. To appear.

[2] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint Hierarchies. Lisp and Symbolic
Computation, 5(3):223-270, September 1992.

[3] Bjorn Freeman-Benson and Alan Borning. The Design and Implementation of Kaleidoscope'90, A Con-
straint Imperative Programming Language. In Proceedings of the IEEE Computer Society International
Conference on Computer Languages, pages 174-180, April 1992.

[4] Bjorn Freeman-Benson, John Maloney, and Alan Borning. An Incremental Constraint Solver. Commu-
nications of the ACM, 33(1):54-63, January 1990.

(5] John Maloney. Using Constraints for User Interface Construction. PhD thesis, Department of Computer
Science and Engineering, University of Washington, August 1991. Published as Department of Computer
Science and Engineering Technical Report 91-08-12.

[6] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie, Philippe Mar-
chal, and Ed Pervin. Comprehensive Support for Graphical, Highly-Interactive User Interfaces: The
Garnet User Interface Development Environment. IEEE Computer, 23(11):71-85, November 1990.

[7] Michael Sannella. The SkyBlue Constraint Solver. Technical Report 92-07-02, Department of Computer
Science and Engineering, University of Washington, February 1993.

[8] Michael Sannella and Alan Borning. Multi-Garnet: Integrating Multi-Way Constraints with Garnet.
Technical Report 92-07-01, Department of Computer Science and Engineering, University of Washington,
September 1992.

(9] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus One-
way Constraints in User Interfaces: Experience with the DeltaBlue Algorithm. Software--Practice and
Eiperience, 1992. In press.

278

A Real Time Extension to Logic Programming Based on the
Concurrent Constraint Logic Programming Paradigm

Tony Savor, Paul Dasiewicz
(tsavor@vlsi.uwaterloo.ca, dasiewic@vlsi.uwaterloo.ca)

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

Abstract
Although concurrent logic programming languages provide a suitable implementation environment

for real time systems, they fail to give any notion of temporal correctness. We define a set of semantics
whereby temporal constraints, consisting of delay, maximum execution time, and priority specifications
can be implemented into existing concurrent logic programming languages. The notion of temporal
inheritance is described which allows distribution of common temporal constraints to processes that are
all part of the same task. We give some examples illustrating the utility of the language extension.

1 Introduction

Real time systems (RTS) can be defined as systems whose result not only depends on the correctness of
the output, but also the time at which the output is produced. Hard RTSs have deadlines which if missed
can be either disastrous (missile guidance systems) or useless (stock market prediction). Soft RTSs such as
telephone exchanges, on the other hand can tolerate a certain proportion of missed deadlines with little or
no catastrophic effect.

Logic programming languages were found to be suitable for the implementation of real time control
systems [1, 6, 8]. Declarative nature of programming, automated translation of software design specifications
to logic [5, 7, 111, and reduced development time [11 are some of the advantages offered by these languages.

Currently, there exist two attempts to extending concurrent logic languages for real time. Fleng [8],
incorporates a delay predicate which binds a logical variable after a specified amount of time. PARLOG-
RT [6] introduces predicates, after, before, and delay. The before and after predicates allow exception handling
if deadlines are preceded or missed respectively, while the delay predicate executes a specified goal after a
finite duration of time.

The problem with the current approaches is the lack of process urgency specification and scheduling.
Under heavy system loads multiple jobs contending for CPU time will be serviced in an order based on
some non-temporal algorithm. The result is that lower urgency jobs may execute before higher urgency ones
possibly causing system failure.

The objective of this work is twofold. First, to provide a set of formal semantics by which ezisting
concurrent logic programming languages can be extended for real time and second, to allow schedulability
of the language by assigning urgencies to all processes of a program.

1.1 Concurrent Constraint Logic Programming

The work presented here is centered around the notion of concurrent constraint logic programming(cclp) [9].
We now give a brief introduction to the relevant issues of cclp.

The architecture of a cclp language, shown in Figure 1, consists of an executing program communi-
cating with a central store. A program is composed of a number of agents,' each of which communicates

Uwer we use the term agent to refer to a process in the constraint logc programming scheme.

279

independently with the store via ask and tell operations (corresponding roughly to read and write).

Program _ _I
I Tl

0 of0 c) Tl

1.1.1 Store

The store is best described as being analogous to a memory map of a traditional computer. The addresses of
a memory map corresponds to variables in a store (ie a variable is mapped to a given address) and the data
elements correspond to constraints which are told on the variables by agents. The ask and tell operations
differ from a memory map in that they read and post constraints rather than data values.

Constraints, which remain in the store for the lifetime of the computation, are added to the existing
constraints of a variable in a conijunctive fashion. The store can be considered a fundamentally parallel model
of memory since agents telling constraints will not overwrite previous entries and all entries will become part
of the Anal solution.

Variables in the store and their associated constraints must be defined under a specific domain of
discourse which we shall assume to be the set of real numbers for purposes of this paper. The result of
a successful computation is a set of variables and their associated constraints which when solved by an
approprte constraint solver2 yield a general solution.

A computation is said to fail if there exists a variable in the store, whose associated conjunction of
constraints entails the empty set. Such a variable is called an inconsistent variable and a store containing
a inconsistent variable is correspondingly called an inconsistent store.

1.1.2 Tell
A tell operation consists of adding a conjunctive constraint to the existing constraints for a given variable.
Since the conjunctions, CorA c and cthi co are equivalent, it should be apparent that the order of which
constraints are posted to the store is irreevant. Thus the store has the notion of stabilisy, or more precisely,
a store where constaion is st bfr is equivalent to a store in which constraint cw is posted before

CO. For computations to remain consistent, each variable must be checked for consistency before a tell

is allowed to succeed. Thus a tell operation must block the telling agent until it is determined that theconstraint which is to be posted to the store is consistent. We call this type of tell atomic telL If the
constraint to be posted by atomic tell is inconsistent with the store, the tell operation fails.

1.1.2 Ask

An ask operation checks if a specified variable in the store entails the asked constraint. To maintain the
notion of stability, an asked constraint in which there does not exist enough information in the store to ensure

that this constraint will me met alter all future tell operations by other agents will suspend. If a constraintis posted by another agent such that the store entails the asked constraint, the previously suspended agent
is allowed to proceed. Conversely if the constraints posted falsify the asked constraint, the ask operation

fails.
2 The constraint solver will depend on the domain of discourse.

280

"For coptain to remai cositet eac vaibems ecekdfrossec eoeatl

The notions of stability within the store imply that a successful ask operation will be successful if it is
asked any time in the future provided that the store remain consistent. Thus we have a framework by which
ask operations will suspend waiting for tell operations, providing an automatic computation synchronization
mechanism allowing all agents to execute concurrently.

1.1.4 Zventual Tell

Atomic tell is a computationally expensive operation since a consistency check must be done before the
operation is allowed to succeed. If one could guarantee that all posted constraints will be consistent with
the store then this consistency check could be omitted. This type of tell operation is called eventual telf.

An eventual tell always succeeds and telling agents do not suspend waiting for constraints to reach the
store. The constraints are put into a repository and eventually migrated to the store. Given that the store
is stable, agents asking constraints not yet entailed by the store will suspend until the store entails the asked
constraints. Thus we have a framework of asking agents' waiting for telling agents' constraints to be posted
to the store and ensuring correct computation regardless of the time constraints take to migrate to the store
through the repository.

2 Incorporation of Temporal Constraints

We now augment the cclp framework as to introduce the notion of time.

2.1 Temporal Constraints

The proposed structure of the real time cclp language (rtcclp) is given in Figure 2. Agents post constraints
to the buffer and proceed with computation (ie eventual tell). Agents have no notion of how long it will
take to post a constraint told by an eventual tell to the store. By making the posting delay of eventual tell
specifiable, we can introduce the notion of time into the computation. The buffer will serve as a scheduler
since it will effectively suspend computation until constraints are posted. We call this buffer a temporal
buffer.

Agents telling constraints through the temporal buffer must have some way of synchronizing with the
constraints when posted, or more precisely should suspend until their constraint is posted to the store by
the temporal buffer. We thus introduce the notion of a temporal tell. The temporal t a compound
operation composed of an eventual tell through the temporal buffer followed by an ask of Id constraint
from the store. The temporal tell effectively communicates scheduling information to the temporal buffer
and suspends until scheduled by having its told constraint posted. Since eventual tells must be consistent
with the store, all temporal constraints must be consistent with previously posted constraints. This issue
shall be readdressed when temporal constraints are defined in section 2.3.

Temporal Buffer

Program Tell Store

Ask

Figure 2: Architecture of a Real-Time cclp Language

2.2 Real-Time Constraints

Specification of start and finish times are the two parts of a temporal constraint. An infinite or sero
specification of finish or start time respectively is used to indicate a non-specification. For example an agent

3The motivation of eventual tell is largely distributed systems. The interested reader is referred to [9] for details.

281

that wishes to be delayed for a period of Delay but not have a definite finish time could post a constraint
such as given in equation I (where T, is the current time, t, the start time and t! is the agents desired
finish time). An agent with a specific deadline by which computation must terminate would post a temporal
constraint similar to equation 2. A window of execution can be established for an agent by specifying both
the delay and mazimum ezecuition time as finite, non-sero values. From these examples it should be apparent
that an agents complete temporal properties can be expressed by specifying only the parameters, Delay and
M.,zEsec4ionTinme.

t. >_ (T + Delay) A tj 5 (T + oo) (1)

t, > (T, + 0) A ty < (T, + Max Ezecution Time) (2)

2.3 Temporal Tell

We now formalize the notion of a temporal tell. A temporal tell consists of telling the start and finish time
constraints of the currently executing agent to the temporal buffer followed by an ask of the start constraint
from the store. Since the temporal buffer is a global entity, it performs scheduling based on agenis start and

finish times. When an agent is to be scheduled for computation, the temporal buffer posts a constraint of
the form t, >= T,, satisfying the agents ask and allowing computation to proceed 4 . Since T, (current time)
is ever increasing, and an agent will suspend until its asked inequality is satisfied (ie will not perform any
tells while suspended), it should be apparent that all temporal tells will be consistent.

The reader should note that each agent's start and finish times as posted by the temporal tell operation
are entirely consumed by the temporal buffer. The start time places a lower bound on the time at which
the agent will be unsuspended, while the finish time indicates to the temporal buffer the agent's urgency of
execution. This notion of agent urgency becomes important when more than one agent wish to be executed

at any point in time. We shall re-address the specification of agent urgency when priorities are introduced
into this framework in section 3.3.

The temporal tell mechanism requires that each agent be allocated a unique variable, (t.) in the store
to which all temporal constraints are told. We call this variable a temporal variable and assume each agent's

temporal variable to exist for the lifetime of the agent. At any given point in time, each temporal variable
entails its associated agent's start time.

To allow newly created agents with higher urgencies to preempt the currently executing one, processes
will be required to execute asks of the form t, >= T, on a regular basis. This gives the temporal buffer the

ability to execute agents for a finite period of time, eztime, by posting a constraint, t, >= T, + eztime.

3 Incorporating Temporal Tells into a Concurrent Logic Program-
ming Language

We now turn our attention to the semantics associated with incorporating temporal tells into a concurrent
logic programming language. Although the concepts presented here should be widely applicable throughout

the family of commit chvice languages, our impleraentation was centered around PARLOG [2].
It should be noted that although the extensions proposed are rooted in concurrent constraint logic

programming, one need not implement a store to realize rtcclp.

3.1 Compound Guard

The clause syntax for rtcclp is as follows:

Head +- GuardlTemporalGuardjBody.

The guard of concurrent logic programming languages is augmented with a temporal guard to form a
compound guard. The two commit operators (1) imply that the Guard must succeed before the Temporal Guard

4We assume the temporal buffer to have knowledge of wk-en agents terminate so as to be able to schedule another agent.

282

is executed and the Temporal Guard must commit before the body of the clause is executed. The temporal
guard performs a temporal tell and commits upon its ask constraint being satisfied by the store. Since both
the Guard and TemporalGuard are optional, we use the commit operator notation below to specify clauses
without a Guard, TemporalGuard and compound guard respectively.

Head -- JTemporalGuardlBody.

Head -- GuardllBody.

Head ,- IIBody.
The temporal guard consists of specification of an agent's Delay and MazEzecutionTime as shown

below.

Head .- GuardJDelay, MaxEzecutionTime IBody.

The temporal buffer ensures that an agent's asked constraint will be posted after (T, + Delay) seconds,
and early enough so that its finish time will be less than T, + MaxEzecutionTime (where T, is sampled
after the delay portion of the temporal guard has succeeded).

The Delay parameter of the temporal guard may be an input parameter of the clause head, however
if uninstantiated at time of temporal guard evaluation, the agent will suspend until the variable becomes
instantiated, after which the agent will execute a temporal tell (effectively sampling 7, after Delay gets
instantiated). The Ma:EzecutionTime specification is to be specified as a constant at compile time. This
will ensure, that at runtime, deadline specifications are not unspecified, leading to possible system error.
The situation when a fixed specification time becomes awkward is with common procedures which are called
by multiple agents with different finish times. The next section introduces a set of semantics to circumvent
this problem.

3.2 Inheritance of Temporal Specifications

To permit multiple clauses to share identical temporal specifications (start and finish times) as a given parent
clause we introduce the notion of temporal constraint inheritance.

Consider the abstract program below. Clause A contains a temporal guard which specifies a finite
execution time. Subgoal BI will unify with the head of clause Bl. Clause BI will inherit the finish time
of clause A. Similarly clause B4 will unify with clause Bl's subgoal B4 and it too will inherit the finish
time of clause A. Inheritance can be conceptualized as having all child process inherit the finish time of
their parent. All processes which inherit a finish time from a common parent will be referred to as a task.
Temporal guards serve to modify the finish time of a process, in effect creating a new task. It should be
noted that clauses inherit the actual finish time, (T, + MazEzecutionTime, where T, is sampled by the
parent), not just MazExecutionTime.

4-- A.

A -- 10, MamEzecutionTimeuJB1, B2, B3.

BI -- 1IB4, B5, B6.
B4 -- l1B7, B8.

B8 +ITemporalGuardflB9.
The notion of tasking creates non-determinism in the finish time if (for example) clause B8's tem-

poral guard has a long finish time, (T,2 + Ma:EzecutionTime2) and clause Bl's temporal guard has
a short finish time, (Tel + MazExecutionTimel), such that (Tel + MazEzecutionTimel) < (T,2 +
MaxEzecutionTime2), the specification of MaE:xecutionTimel may not be met due to the fact that it
could be waiting for the temporal guard of clause B8. This requires all subclauses which are part of the
same functional task to inherit their temporal specifications from a common parent. A programmer specified
temporal guard creates a new task and as such parent tasks should not be dependent on child tasks, but
remain functionally and temporally independent.

Semantically, clauses inherit start times as well as finish times, however since start times have been met
given that the temporal guard has committed, they will also be met after the start times are inherited given
the fact that T,, is sampled by the parent. For this reason clauses need only inherit finish times.

283

3.3 Priorities

Programmers often require more temporal expressive power than can be bought with the temporal specifica-
tions described. For example, supervisory processes in a system are usually required to be of higher urgency
than worker process. For this reason, we introduce the notion of priorities.

Syntactically, a clause priority is specified as an optional third element in the temporal guard and does
not change any of the commitment semantics. Like MazEzecutionTime, priority information is entirely
consumed by the temporal buffer and is treated as scheduling information. In the event of an unspecified
priority, the system defaults to some predetermined middle priority, giving the programmer the flexibility of
using priorities higher or lower than the default.

Inheritance of priorities is identical to that of finish times. Processes that execute a temporal guard
have thez priority modified to reflect that of the temporal guard. Child processes that are spawned by a
parent inherit the finish time and priority of the parent. In the example below, processes, B, C, D and E
execute at MatEzecutionTime1 and Priority, while processes F and G execute at MazEzecutionTime 2

and at the system default priority.

-A

A +- IDelayi, MazEzecutionTimel, Priority, IB, C.

B •- ID, E.

D +- IDelay2 , Ma:EzecutionTime 2 IF, G.

The inclusion of priorities into the framework should be regarded solely as process urgency information.
Should other urgency information, such as process execution time or confidence intervals of execution, be
available, it could be incorporated into this framework in an identical fashion.

3.4 Input & Output

Program input and output (I/O) such as handshaking introduces non-determinism into deadline specifica-
tions since a process belonging to a task may wait indefinitely for an external device over which it has no
control. It becomes impossible to bind deadlines around such events. For this reason we provide a set of
semantics for non-deterministic I/O by which the programmer can effectively perform I/O and maintain the
temporal properties of tasks.

We begin by separating possibly non-deterministic I/O predicates from the remainder of the predicates
of the language. Each I/O predicate will implicitly execute a temporal guard before the actual I/O predicate
is executed. The effect is that each I/O predicate creates a separate task for itself and does not inherit its
parents finish time. The problem with this scheme is that all predicates following an I/0 predicate would
then inherit its finish time. For this reason we restrict the placement of I/O to the final predicates of the
guard as shown below.

A ITemporalGuardl I B1, B2 , Ba,. .. , Bi.

B, .- G1 , G2, . . ., Gi & 1/01,1/02 ... I/Ok (TemporalGuard2 IBody2.

The predicates G, ... Gj of the second clause form the standard component of the concurrent logic
programming guard. The & is a sequential operators which ensures that the standard guard completes
execution before the I/O is begun. After all the I/O goals have completed, the temporal guard is executed
and creates a new task for subgoals in the body of the clause.

The net effect is that that the parent clause's task is responsible for scheduling the I/O operations within
the duration of its finish time. In the example above, the first clause's subgoal in the body, B1 unifies with
the head of the second clause. Guard predicates G1 ... Gj are executed under the first clause's task. Upon
reaching the I/O predicates, the task of the first clause is terminated and each I/O predicate executes its
temporal guard and creates its own task. When all I/O predicates have succeeded, the guard commits which
invokes the clause's temporal guard, effectively creating a new task for the clause's body.

'We borrow this sequential operator notation from PARLOG [2].

284

The temporal guards for the I/O subgoals are specified when the language is implemented and are not
user modifiable. Typically I/0 predicates are given a high system priority, infinite MazEzecutionTime and
a delay time of sero.

4 Examples

We now turn our attention to the implementation of a few examples which illustrate the utility of the
extensions.

4.1 Delay

A finite delay can be modeled as a delayed start time with an unspecified finish time.

+- A.

A -- IDelay, oolBody.

Above, when the goal unifies with the clause, the temporal guard waits at least Delay before committing.

4.2 Timeout

We can also model an action that waits for an input for a fixed amount of time and if the input does not
occur, a timeout handler is executed. In the example below, Proceeslnput is to be executed should the
input occur before Waittime and ProceasTimeout if the timeout expires. Neither of the clauses uses a
MazEzecutionTime specification and default to the system priority.

+- A.

A --- Input(z)1O, oolProcessInT '.

A .- jWaittime, oolProceseTimeout.

4.3 Periodic Processes

A periodic process such as the sampling of a computer keyboard is a task which is performed repetitively,
say every D units of time. The example below highlights the design of such a process. Scan is invoked by
the goal and delays D time units before committing. After commitment, Scan and Key.Pressed predicates
execute in parallel.

4- Scan.

Scan -- ID, cjScan, KeyPressed.
Key.Pressed -- YESIO, b1Process.Key.

Key-Pressed .- NO1.

Both Scan and Key-Pressed have maximum execution times of e as defined by the temporal guard. It
should be apparent that the Scan clause will be re-invoked on the interval [0, e] time units after unsuspension
of the temporal guard. This mechanism allows the programmer to effectively specify the worst case error in
sampling due to program execution and take the factor into account in the calculation of D.

The Key.Pressed clauses process the input depending if a key was pressed or not. In the key pressed
case, a new task is created with a MazExecutionTime = 6. For this example, it is required '.hat a key be
processed before the next sampling. Based on this knowledge, we calculate the worst case execution time for
6. Initially, the temporal guard of the Scan clause is executed at, to. In the worst case, Scan will re-invoke
itself at time to and the temporal guard for the Key.Pressed clause will be executed at time to+ e (assuming
a key was pressed). The Process-Key must be executed before the next scan interval, (t0 + D), and thus
(to +e+6 <to+ D), or (e+6 < D).

With little or no modification, this segment of code could serve as an interrupt generator and handler
for a larger system. By specifying high system priorities, one could ensure that these clauses preempt lower
priority system processes and hence would function very similarly to a hardware generated interrupt.

285

4.4 Representation of State Machines

The state machine of Figure 3 can be represented in rtcclp as shown below.

*-- A.

A ,- XiTemporaIGuardil B.

B ,- YjTemporalGuard 2 1C.

C ' ZiTemporalGuards A.

The inputs of the state machine (X, Y and Z) treated as non-deterministic I/O and are placed in the
guards. The temporal guard specifies the processing time of transitions after the input has occurred. It is
interesting to note that each task is responsible for scheduling the next. For example if the state machine is
currently in state A and an X transition is received, TemporalGuard1 is executed which forms a new task.
The newly created task is completed when subgoal B succeeds or more precisely when the state machine is
in state B waiting for input Y.

A

X

B

z

Y

C

Figure 3: Typical Finite State Machine

5 Conclusions

We have defined a methodology by which to incorporate real time constraints into a concurrent logic pro-
gramming language based on the concurrent constraint logic programming paradigm. Time is introduced
into the logical framework by making the time taken to post constraints deterministic. The rtcclp language
was implemented by modifying the abstract machine of PARLOG [3, 4]. The expressive power of rtcclp was
found to be natural and effective in the implementation of a small private branch telephone exchange (PBX).
At the programmer level, tasks and inheritance allow for increased programmer expressiveness, while at the
emulator level, tasks are used to group work. Since the processor executes a single task with the highest
urgencye, tasks are completed sequentially rather than attempting to service many processes at once by
timeslicing.

Preliminary simulations indicate approximately 10% decrease in performance of the real time extendedPARLOG based on the PARLOG benchmarks described in [3]. Simulations of the PBX indicate almost two

orders of magnitude decrease in CPU utilization between the real time and non-real time PARLOG due to
the ability to suspend tasks for a finite delay. As expected, real time PARLOG produced results which had

Urgency is a fwnction of the current time, task priority, task deadline and scheduling algorithm.

286

greater probabilities of being within temporal specification than standard PARLOG. Further details of the
implementation of real time PARLOG can be found in [10].

Acknowledgements

The authors wish to thank Keith Clark of Imperial College, London for providing documentation and source
code for the PARLOG language and emulator, without which verification of the ideas presented would not
have been possible. Gratitude is also expressed to Douglas Renaux of the University of Waterloo for his
useful comments and provision of the PARLOG private branch exchange software.

References
[1] J.L. Armstrong, N.A. Elshiewy, and R. Virding. The phoning philosopher's problem or logic pro-

gramming for telecommunications applications. In Proceedings of the 3rd IEEE Symposium on Logic
Programming, Salt Lake City, pages 28-33, 1986.

[2] Keith Clark and Steve Gregory. PARLOG: parallel programming in logic. ACM Transactions on
Programming Languages and Systems, 8(l):1-49, January 1986.

[3] Jim A. Crammond. Implementation of Committed Choice Logic Languages on Shared Memory Multi-
processors. PhD thesis, Dept. of Computing, Imperial College, London, 1988.

[4] Jim A. Crammond. The abstract machine and implementation of parallel PARLOG. Technical report,
Dept. of Computing, Imperial College, London, July 1990.

[5] Andrew Davison. From Petri Nets to PARLOG. Technical Report PAR 91/6, The PARLOG Group,
Imperial College, London, March 1990.

[6] N.A. Elshiewy. Logic programming for real-time control of telecommunication switching systems. Jour-
nal of Logic Programming, pages 121-144, August 1990.

[7] David Gilbert. Implementing LOTOS in PARLOG. Technical Report PAR 87/1, The PARLOG Group,
Imperial College, London, January 1987.

[8] Martin Nilsson. Mobile robot control with concurrent logic languages. In Proceedings Euromicro Work.
shop on Real Time, pages 42-46, 1990.

(9] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-Mellon
University, 1989.

[10] T. Savor and P. Dasiewics. Extending PARLOG for real-time. to appear.

(11] T. Taguchi and H. Hasegawa. Implementation of SDL switching systems using a parallel logic program-
ming language. In SDL '91: Evolving Methods, pages 407-420, 1991.

287

Synthesis of Constraint Algorithms*

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304

smith@kestrel.edu

1 Introduction
Constraint propagation is one of the key operations on constraints in Constraint Programming. In a con-
straint program, a constraint set partially characterizes objects of interest and their relationships. As com-
mittments are made that further characterize some object, we want to infer consequences of those committ-
ments and add those consequences as new constraints. Efficiency concerns drive us to look closely at the
representation of constraints, inference procedures for solving constraints and deriving consequences, and
the capture of inferred consequences as new constraints.

We report here on our current efforts at developing automated methods for deriving problem-specific
constraint propagation code. This effort is part of a broader development of automated tools for transform-
ing formal specifications into efficient and correct programs. The KIDS system [9] serves as the testbed for
our experiments and provides tools for performing deductive inference, algorithm design, expression simpli-
fication, finite differencing, partial evaluation, data type refinement, and other transformations. We have
used KIDS to derive over 60 algorithms for a wide variety of application domains, including scheduling,
combinatorial design, sorting and searching, computational geometry, pattern matching, and mathematical
programming.

A transportation scheduling application motivated our constraint propagation work (8]. We used KIDS
semiautomatically to derive a global search (backtrack) scheduler. The derivation included inferring pruning
conditions and deriving constraint propagation code. The resulting code is given in (8] and has proved
to be dramatically faster than other programs running the same data (e.g. OPIS at CMU). The pruning
and constraint propagation are so strong that the program does not backtrack on the data we have tried.
For example, on a transportation problem involving 15,460 movement requirements obtained from the US
Transportation Command, the scheduler produces a complete feasible schedule in about one minute. A
constraint network formulation of this problem would have over 46,000 variables and 150,000 constraints.

Any constraint programming system depends on an abstract datatype of constraints. What are some
of the basic operations on constraints? First, constraints are expressed in the language of some theory (e.g.
linear arithmetic with inequalities) and there must be a representation of constraints1 . Second, in that
theory there must be procedures for solving constraints and extracting solutions. Third, there must be a
procedure for inferring consequences of constraints and capturing their content in a new constraint (perhaps
by weakening or approximation). Fourth, there must be a way to compose two constraints (e.g. to assimilate
a new constraint).

Current constraint programming languages (e.g. CLP(R) (4], CHIP (2]) effectively carry out these
operations via representations and operations specialized to the theory of the constraint language. For the
sake of efficiency it may be necessary to design representations and operations that exploit not only the
general background theory, but the intrinsic structure of the particular problem being solved.

"This research was supported in part by the Office of Naval Research under Contract Office of Naval Research Grant
N00014-90-J-1733, in part by the Air Force Office of Scientific Research under Contract F49620-91-C-0073. and in part by
DARPA/Rome Laboratories under Contract F30602-91-C-0043.

'We will not distinguish constraints and constraint sets, since a constraint set usually denotes the constraint that is a
conjunction of the constituent constraints.

288

2 Global Search Theory

Our studies of constraint propagation take place within a formal model of a class of constraint programs
called global search algorithms. Global search generalizes the well-known algorithm concepts of binary search,
backtrack, and branch-and-bound (6].

The basic idea of global search is to represent and manipulate sets of candidate solutions. The principal
operations are to eztract candidate solutions from a set and to split a set into subsets. Derived operations
include (1) filters which are used to eliminate sets containing no feasible or optimal solutions, and (2)
constraint propagators that are used to eliminate nonfeasible elements of a set of candidate solutions. Global
search algorithms work as follows: starting from an initial set that contains all solutions to the given problem
instance, the algorithm repeatedly extracts solutions, splits sets, eliminates sets via filters and propagates
constraints until no sets remain to be split. The process is often described as a tree (or DAG) search in which
a node represents a set of candidates and an arc represents the split relationship between set and subset.
The filters and constraint propagators serve to prune off branches of the tree that cannot lead to solutions.

The sets of candidate solutions are often infinite and even when finite they are rarely represented
extensionally. Thus global search algorithms are based on an abstract data type of intensional representations
called space descriptors (denoted by hatted symbols). The space descriptors can be thought of as constraints
or representations of constraints.

Global search can be expressed axiomatically via a global search theory (6] which we elide here. In the
following we present just those parts needed to discuss the formal derivation of constraint propagation code.

A problem can be specified by presenting an input domain D, an output domain R, and an output
condition 0 : D x R - boolean. If O(x, z) then we say z is a feasible solution with respect to input z.
In other words, the output condition defines the conditions under which a candidate solution is feasible or
acceptable. Global search theory extends the components of a problem with a datatype of space descriptors
(constraint representations) A and a predicate Satisfies : R x A - boolean that gives the denotation of
space descriptors; if Satisfies(:, i) then : is in the set of candidate solutions denoted by ý and we say that
z satisfies f.

One version of the transportation scheduling problem can be specified as follows. The input is a set of
movement requirements and a collection of transportation resources. A movement requirement is a record
listing the type of cargo, its quantity, port of embarkation, port of debarkation, due date etc. Schedules
are represented as maps from resources to sequences of trips, where each trip includes earliest-start-time,
latest-start-time, port of embarkation, port of debarkation, and manifest (set of movement requirements).
The type of schedules has the invariant (or subtype characteristic) that for each trip, the earliest-start-time
is no later than the latest-start-time. A partial schedule is a schedule over a subset of the given movement
records.

Twelve constraints characterize a feasible schedule for this problem:

1. Consistent POE and POD - The POE and POD of each movement requirement on a given trip of a
resource must be the same.

2. Consistent Resource Class - Each resource can handle only some movement types. For example, a

C-141 can handle bulk and oversize movements, but not outsize movements.

3. Consistent PAX and Cargo Capacity - The capacity of each resource cannot be exceeded.

4. Consistent Initial Time - The start time of the first trip of a transportation asset must not precede its
initial available date, taking into account any time needed to position the resource in the appropriate
POE.

5. Consistent Release Time - The start time of a trip must not precede the available to load dates of any
of the transported movement requirements.

6. Consistent Arrival time - The finish time of a trip must not precede the earliest arrival date of any of
the transported movement requirements.

7. Consistent Due time - The finish time of a trip must not be later than the latest arrival date of any of
the transported movement requirements.

289

8. Consistent Trip Separation - Movements scheduled on the same resource must start either simulta-
neously or with enough separation to allow for return trips. The inherently disjunctive and relative
nature of this constraint makes it more difficult to satisfy than the others.

9. Consistent Resource Use - Only the given resources are used.

10. Completeness - All movement requirements must be scheduled.

These constraints are expressed concisely as quantified first-order sentences.
A simple global search theory of transportation scheduling has the following form. A set of schedules is

represented by a partial schedule. The split operation extends the partial schedule by adding one movement
requirement in all possible ways. The initial set of schedules is described by the empty partial schedule -
a map from each available resource to the empty sequence of trips. A partial schedule is extended by first
selecting a movement record mvr to schedule, then selecting a resource r, and then a trip t on r (either an
existing trip or a newly created one). Finally the extended schedule has mvr added to the manifest of trip
t on resource r. The alternative ways that a partial schedule can be extended naturally gives rise to the
branching structure underlying global search algorithms. The formal version of this global search theory of
scheduling can be found in [8].

When a partial schedule is extended it is possible that some problem constraints are violated in such
a way that further extension to a complete feasible schedule is impossible. In global search algorithms
it is crucial to detect such violations as early as possible. The next two subsections discuss two general
mechanisms for early detection of infeasibility and techniques for mechanically deriving them.

2.1 Pruning Mechanisms

Pruning tests are derived in the following way. Let z be a problem input and F be a space descriptor. The
test

3(z : R) (Satisfies(:, f) A O(z, z)) (1)

decides whether there exist any feasible solutions satisfying F. If we could decide this at each node of a
global search algorithm then we would have perfect search - no deadend branches would ever be explored.
In practice it would be impossible or horribly complex to compute it, so we rely instead on an inexpensive
approximation to it. In fact, if we approximate (1) by weakening it (deriving a necessary condition of it) we
obtain a sound pruning test. That is, suppose we can derive a test O(z, F) such that

3(z : R) (Satisfies(z, f) A O(z, z)) • *(z, f). (2)

By the contrapositive of (2), if -,4(z, f) then there are no feasible solutions satisfying F, so we can eliminate
f from further consideration. More generally, necessary conditions on the existence of feasible (or optimal)
solutions below a node in a branching structure underlie pruning in backtracking and the bounding and
dominance tests of branch-and-bound algorithms [7].

It appears that the bottleneck analysis advocated in the constraint-directed search projects at CMU
[3, 5] leads to a semantic approximation to (1) that is neither a necessary nor sufficient condition. Such a
heuristic evaluation of a node is inherently fallible, but if the approximation to (1) is close enough it can
provide good search control with relatively little backtracking.

In KIDS, a filter 4 is derived using a general-purpose first-order inference system. The inference of 4,
takes place within the theory of the specified problem. Potentially, any special problem structure captured
by the axioms and theorems of this theory can be exploited to obtain strong problem-specific pruning
mechanisms. Analogous comments apply to the constraint propagation mechanisms discussed next. For
details of deriving pruning mechanisms for various problems see [6, 9].

290

subspace _._] fail

cutting coaswaints

Figure 1: Global Search Subspace and Cutting Constraints

2.2 Cutting Constraints and Constraint Propagation

Pruning has the effect of removing a node (set of solutions) from further consideration. In contrast, constraint
propagation has the effect of changing the space descriptor so that it denotes a smaller set of candidate
solutions. Constraint propagation is based on the notion of cutting constraints which are necessary conditions
,#(z, z, f) that a candidate solution satisfying f is feasible:

V(z : D, z : R, F: A) (Satisfies(z, F) A O(z, z) ==* *(z, z, F)). (3)

By the contrapositive of (3), if -%(z, z, f) then - cannot be a feasible solution satisfying f. So we can
try to incorporate # into f to obtain a new descriptor, without losing any feasible solutions. See Figure 1.

Once the inference system has been used to derive a cutting constraint *, we specify an operation,
called Cut, that maps ý to a new descriptor i such that

Satisfies(z,i) = (Satisfies(z, f) A I(xz,,)).

Constraint propagation is the iteration of Cut until we reach a fixpoint Cut(i) = i (See Figure 2). The
challenge in implementing constraint propagation is scheduling this iteration in order to minimize unnecessary
work. This involves analyzing the dependencies between variables at design time and generating the control
structure needed to reestablish a fixpoint when the Split operation causes the value of some variable to
change.

The effect of constraint propagation is to propagate information through the subspace descriptor re-
sulting in a tighter descriptor and possibly exposing infeasibility. There are several reasons for constraint
propagation. First, it shrinks the space of candidate solutions and may thus reduce the branching required
to explore it. Second, the generated descriptors may fail the pruning tests and thus allow early termination.

The mechanism for deriving cutting constraints is similar to (in fact a generalization of) that for deriving
pruning mechanisms. For transportation scheduling, the derived Cut operation has the following form, where
e•it denotes the earliest-start-time for trip i and estý denotes the earliest-start-time for trip i after applying
Cut (analogously, let, denotes latest-start-time), and roundtripi is the roundtrip time for trip i on resource
r. For each resource r and the ith trip on r,

Jesti
est = maz esti-.I + roundtripi

mar-release-time(manifesti)

291

0
prune off subsp=c

split (contans no fesble solutions)

cutQ0

cut

cut

cut Qfixpoint of the cuttng process

Split

Figure 2: Pruning and Constraint Propagation

184 = rmin Isti+l - roundtripi
I min-finish-time(manifesti)

Here max-release-time(manifesti) computes the max over all of the release dates of movement require-
menta in the manifest of trip i and min-finish-time(manifesti) computes the minimum of the finish times
of movement requirements in the same manifest. Boundary cases must be handled appropriately.

The effect of iterating this Cut operation after adding a new movement record to some trip will be to
shrink the (earliest-.tart-time, latest-start-time) window of each trip on the same resource. If the window
becomes negative for any trip, then the partial schedule is necessarily infeasible and it can be pruned.

292

3 Summary

The message of this work is that there are knowledge-based tools that can be used to synthesize highly
specialized and efficient implementations of constraint programs. The idea is to exploit not only the structure
of the theory within which the constraints are stated, but the local theory of the particular problem being
solved. The local structure supports the inference of specialized pruning and constraint propagation code.
The use of a datatype refinement system [1] also allows specialized representations of objects, constraints,
and efficient implementation of their operations. The result can be much more efficient code than is possible
using general-purpose representations, solvers, and inference procedures.

References

[1] BLAINE, L., kND GOLDBERG, A. DTRE - a semi-automatic transformation system. In Constructing
Programs from Specifications, B. Moller, Ed. North-Holland, Amsterdam, 1991, pp. 165-204.

[2] DINCBAS, M., VANHENTENRYCK, P., SIMONIS, H., AND AGGOUIN, A. The constraint logic pro-
gramming language CHIP. In Proceedings of the Second International Conference on Fifth Generation
Computer Systems (Tokyo, November 1988), pp. 249-264.

[13 FOX, M. S., SADEH, N., AND BAYKAN, C. Constrained heuristic search. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (Detroit, MI, August 20-25, 1989), pp. 309-315.

[4] JAFFAR, J., MICHAYLOU, S., STUCKEY, P., AND YAP, R. The CLP(R) language and system. ACM
Transactions on Programming Languages and Systems 14, 3 (July 1992), 339-395.

[5] SADEH, N. Look-ahead techniques for micro-opportunistic job shop scheduling. Tech. Rep. CMU-CS-
91-102, Carenegie-Mellon University, March 1991.

[6] SMITH, D. R. Structure and design of global search algorithms. Tech. Rep. KES.U.87.12, Kestrel
Institute, November 1987. to appear in Acia Informatica.

[7] SMITH, D. R. Structure and design of global search algorithms. Tech. Rep. KES.U.87.12, Kestrel
Institute, November 1987.

[8] SMITH, D. R. Transformational approach to scheduling. Tech. Rep. KES.U.92.2, Kestrel Institute,
November 1992.

[9] SMITH, D. R. KIDS - a semi-automatic program development system. IEEE Transactions on Software
Engineering Special Issue on Formal Methods in Software Engineering 16, 9 (September 1990), 1024-
1043.

293

CONSTRAINT-BASED LANGUAGES FOR SCIENTIFIC
DATABASE AND MODELING SYSTEMS.

Terence R. Smith and Keith Park.

22nd January, 1993.

1 GOAL

We focus our attention on the manner in which constraint programming (CP) may serve as a basis
for languages that support the modeling and database activities of a large class of scientific investi-
gators. In particular, we will examine the applicability of high-level languages based on constraints
to problems relating to scientific modeling and database systems for large-scale environmental mod-
eling. We believe that it is necessary to have a clear model of the nature of scientific investigations
in order to proceed with such an examination. We therefore base our discussion of the applicability
of such languages on a model of scientific investigation, and examine several classes of problems
that arise as a consequence of the model.

Our discussion is based on the preliminary results of a multi-year investigation whose goal is
the design and partial implementation of a modeling and database language with which scientists
may represent a large variety of problems in such a manner that all irrelevant computational issues
are hidden. In particular, our research is driven by the long-term computational requirements of
a group of earth scientists who are investigating the hydrology, geochemistry and geomorphology
of the entire Amazon drainage basin. The computational requirements of these scientists are
based on the need to develop, in an iterative manner, models of complex phenomena. Such model
development involves issues relating to very large, heterogeneous databases and to numerically
intensive computations.

2 SCIENTIFIC INVESTIGATIONS, DOMAINS OF ELEMENTS
AND CONSTRAINTS

The goal of our project is to provide scientists with a system that combines the functionality of
a database system and the functionality of a modeling system. We believe, as a result of our
requirements analysis of the Amazon project, that these two functionalities cannot be usefully
separated. In particular, we believe that it is important to provide the scientist with a system
that supports the iterative development, testing and application of model, of phenomena under
investigation. Such support is to be provided in terms of a high-level language that is being
designed to enable scientists to represent, both efficiently and effectively, any of the operations that
they may wish to carry out during the various stages of the conceptual or computational modeling
of some phenomenon.

294

A central component in the design of the language is an extensible and potentially very
large collection of abstract and concrete representational domains of elements that represent the
total set of concepts that a scientist needs for modeling complex earth science phenomena in data-
and numerically-intensive investigations. The reason for our focus on this concept of a set of
representational domains is based upon our idea that the core activities of scientists involved in
complex modeling operations relate to the discovery and application of large numbers of clever and
powerful representational domains of elements and associated transformations. In particular, we
view much of science as an activity in which scientific investigators:

1. construct, evaluate and employ a large set of representational domains for conceptual entities;

2. construct, evaluate and employ many representations of transformations between these do-
mains;

3. construct instances of domain elements;

4. apply sequences of specific transformations to specific sets of domain elements in specific
investigations.

Of particular importance are domains involving spatio-temporal elements.
There appear to be two major sets of reasons for supporting large lattices of domains and

associated transformations as the core element in a high-level language that is designed to support
scientific activity:

1. such a lattice reflects a major componenent of scientific activity, which involves the itera-
tive discovery of expressivc conceptual domains of elements and associated transformations,
together with appropriate representations of these domains and transformations. The ex-
pressiveness of such domains is apparent in terms of their value in constructing models of
given domains of phenomena. In many subfields of science and mathematics, there are typ-
ically large numbers of such domains. We therefore believe that it is important to provide
computational support for the construction and use of such lattices of domains.

2. In computational terms, such a lattice is of value in relation to reducing the cost of search,
insofar as domain membership may be used to provide information on where to search, and
in terms of reducing errors, insofar as domain membership may be used to provide a basis for
such operations as type checking.

2.1 Lattices of Domains and Constraints

Abstract representational domains correspond to the conceptual domains of a scientist while concrete
representational domains correspond to the scientist's choice of a representation for the elements
of some abstract domain, in terms of elements from other abstract and concrete representational
domains. There may be more than one concrete representational domain for each abstract repre-
sentational domain. The several characteristics of any concrete representational domain include:

1. the structure of the domain elements;

2. constraints on thv values of domain elements;

295

• • ' . , i a I I I I i I iI

3. sets of transformations on the domain elements, that in part provide the semantics of the
domains.

Hence, one may view domain membership as involving constraints on the structure (or represen-
tation) of the elements in a domain; constraints on the values of the elements in a domain; and
constraints on the transformations that are applicable to the elements in a domain. Furthermore, we
note that a major mechanism for creating new representational domains involves placing constraints
on the values of elements of previously constructed domains. The placing of such constraints also
induces a structure on the domains that has inheritance properties associated with representation
and structure.

3 CONSTRAINTS IN MODELING AND DATABASE LAN-
GUAGES

Our basic hypothesis, based upon observations of the activities of many environmental scientists,
is that nearly all of the problems for which such scientists require computational support may be
expressed by constraints in a manner that is both very easy and very natural for the scientists.
The ease of expression results, in part, from the facts that:

1. constraints are largely declarative in nature and typically permit a very parsimonious repre-
sentation of conditions that some computational modeling activity must satisfy;

2. the iterative strengthening and weakening of constraints provides a simple yet powerful strat-
egy for acquiring scientific understanding;

3. expressing problems in terms of constraints permits one to hide computational issues that are
independent of the scientific phenomena under investigation.

More importantly, perhaps, the simplicity and expressiveness of constraint-based representa-
tions follows naturally from our model of scientific activity and in particular from its characteriza-
tion in terms of lattices of algebraic domains. In particular, it follows from this model that there
are at least four major classes of problems for which expression by means of constraints is natural
and important;

1. checking for the satisfaction of constraints defining membership in some domain;

2. accessing elements of domains in terms of constraints;

3. accessing transformations in terms of constraints;

4. specifying transformations of elements in terms of constraints that relate to the schema of
domain transformations and to values.

3.1 Checking Constraints that Define Membership in Some Domain

It is clear that one would frequently wish to check whether a given element belongs to some
domain. For example, this would occur whenever type checking is being performed. In general, this
will require that we check whether the value constraints associated with the domain are satisfied.

296

Another issue that arises with respect to value constraints that are used to define domains is that
an arbitrary set of constraints may be unsatisfiable, unless there is some mechanism that tests for
such unsatisfiability.

3.2 Accessing Elements of Domains

A major activity in many scientific investigations relates to accessing elements from given domains.
One may view such access as a process in which constraints are placed on some abstract entity,
which are satisfied during the access process. Given the previous comments on domains, it is clear
that specifying that an element belongs to some domain is equivalent to specifying const,-aints
concerning the representation, values and applicable transformations (i.e., the semantics) of the
desired element. Additional constraints on the values of the element may then specify search within
a given domain. An advantage of constraints is that is permits a satisficing strategy with respect to
accessing appropriate domain elements, while it is also easy to refine a search with the addition of
more constraints. There appears to be considerable value, from a scientist's point of view in terms
of expressiveness, in representing values of domain elements in implicit form. For example, we may
wish to represent constraints on the values of some elements in terms of equations or inequalities
that must be solved in order to obtain explicit representations of the values. Computational systems
must therefore possess some means for determining the meaning associated with such constraints.

3.3 Accessing Transformations of Domains

An issue that appears to have received little attention involves accessing trransformati on. on do-
mains. Apart from giving a names to transformations and accessing them by name, they too may
be accessed by providing a set of constraints. Such constraints may be specified in terms of the
schema of the constraint, expressed in terms of the domain names for the domain and range of
the transformations, and by constraints on allowable subsets of domain-range pairs, which may be
expressed in terms of arbitrary sets of constraints.

Accessing transformations using their names is very restrictive since the only feasible con-
straints on transformation names must be given in terms of syntactic processing of regular expres-
sions in the name space. Moreover, even if transformation modules were given some mnemonic
names suggestive of what the transformations do, we cannot expect globally acceptable naming
conventions among the developers and users of transformations. Furthermore, since the values of
input/output pairs of transformations are stored in its intensional form, value-based retrieval, while
theoretically feasible, is impractical.

We therefore focus on signature-based retrieval of transformations. The domain names con-
stitute partial information concerning transformations, and as such the signature of transformations
may serve as search keys. For example, suppose that a domain called POLYGON is defined, and
a transformation which computes intersections of two polygons is stored under the name poly-
gon.intersection. If the signature of this transformation is stored in a relational table with the
schema of [NAME, INPUT-DOM, OUTPUT-DOM], the names of the transformations may be retrieved
by simple table lookup.

The use of domain names in the signature, however, will suffer from the same problem as
the use of transformation names as search keys, since constraints on names are essentially that of
syntactic identity. By relaxing the constraints in such a manner that the intended semantics of
queries is preserved, transformations that are behaviorally identical could also be retrieved. Thus,

297

we could improve the situation by considering equivalence among domains and signatures. Aliasing
or renaming of domains should be taken into consideration in processing queries, together with the
order and any "irrelevant" domains appearing in the signature.

In addition to these syntactic relaxations, the system may perform some form of semantic
matching of transformation signatures based on the notion of domain interdependencies. The class
of interdependencies we will consider include equivalence, super/sub domains, aggregated domains,
and other set-theoretic relations such as disjoint, covering, etc. To utilize these dependencies among
domains, query processing may be extended by constraint solving capabilities. Suppose for example
that a transformation-base is queried about transformations for computing the intersection of two
rectangles. If there is no transformation whose signature matches exactly that of the query, the
system relaxes the constraints and starts searching the domain lattice for its super domains. Since
the domain RECTANGLE is a subdomain of POLYGON, together with constraints on the number of
sides and angles between adjacent sides, transformation for computing the intersection of polygons
may be accepted as an appropriate answer to the query.

3.4 Specifying Transformations of Elements in Terms of Constraints

An additional approach for accessing transformations involves the idea of implicitly defined trans-
formations. When a transformation is not explicitly stored in the transformation-base, it may be
of value for the system to suggest a construction of the desired transformation from the existing
lattice of domains and the associated sets of transformations. Since transformation signatures may
be represented in terms of a graph-like structure in which nodes denote domains and directed edges
denote transformations, a path suggests the derivability of a new transformation and the edges in
the path represent compositions of transformations.

As an illustration of the value of the proposed mechanism. consider a scientist investigating
"a model of river discharge who wishes to extract a representation of a drainage network (TN) from
"a representation of topography. Suppose that the only topographic dataset available for the region
of interest takes the form of a triangulated irregular network (TIN). The scientist may query the
system in order to locate appropriate transformations that transform the TIN to a DN with the
use of a query that includes constraints on its signature. If there is no transformation in the system
having this signature. there may be a transformation that generates a DN from a raster digital
elevation model (DEM), and a further transformation that converts the TIN to a DEM, which
when composed may provide an acceptable solution to the scientist's problem.

298

Set-based Concurrent Engineering

Allen C. Ward
Assistant Professor

Department of Mechanical Engineering and Applied Mechanics
University of Michigan

Ann Arbor, MI 48109-2125
alward@um.cc.umich.edu

Abstract: Concurrent engineering (CE) shortens design cycles and improves design
quality by designing more of the total system, including both the product and the
manufacturing system, in parallel. Reason and empirical studies suggest that
members of the design team should communicate and reason about sets of possible
solutions, rather than changes to a single solution. This process can in part be
formalized and automated. This paper summarizes my recent work in this area.

1) Introduction

By design I mean the entire process by which an organization decides what to make and how
to make it. My students and I focus on design processes that a) involve multiple designers using
multiple models to make interconnected decisions simultaneously and b) grac4 u'lly narrow a set
of possible solutions, rather than making changes to a "points in the design sp,..e." A trivial
example is arranging a meeting by telephone. We may call with a single time, changing it as we
discover conflicts. Or, we may identify several possible days, and call to eliminate unsatisfactory
times; this set-based approach is superior when the problem is highly constrained.

This discussion proceeds from motivations, through some basic concepts, to recent results,
and finally to current projects.

1) Motivation
If team members ensure that their communications are correct about the entire set of solutions

to be considered, then communications remain valid throughout the design process. This permits
simultaneous decisions. Conversely, communication that change a single solution invalidate
previous communications and decisions. Nevertheless, engineers often emphasize "shortening
the iterative loop", and design theorists often emphasize rapid translation of point solutions.

These point-based views may be influenced by academic instruction and optimization theory,
which emphasizes iterative hill-climbing using a single model: experience with CE should lead
to a more set-based approach. Jeff Liker, a sociologist in the UM Industrial Operations
Engineering department, and I are finding support for this hypothesis by comparing US and
Japanese automobile companies. For example, we have studied the design of cooling fans by
suppliers. All assembly companies studied but one communicate with suppliers through early,
informal discussions, followed by a "hard specification". Suppliers design a part to meet the
specification. The exception, a highly successful Japanese company with 30 years experience in
CE, imposes a 20-30 percent "design tolerance" on specifications. The suppliers, in turn, produce
some 30 different prototype designs. The specifications and solutions are gradually narrowed: a
five percent "design tolerance" remains two years into the development cycle. This is clearly
expensive, but increases reliability of communication, design performance and modularity,
flexibility in response to concurrent market research, and availability of data for the next design
cycle.

We have begun incorporating these ideas, together with a theory of design relationships that
provides a fundamental explanation for most of the standard CE "methodologies", into teaching
design at the university and in industry. Performance in the UM senior mechanical design project

299

course has been improving dramatically, although that causes cannot be isolated. The Industrial
Technology Institute has agreed to assume the training load.

Additional motivation is provided by the success of a "mechanical design compiler," a
program that accepts schematics, specifications, and utility functions for a fairly wide variety of
mechanical designs, and returns an optimal selection of catalog numbers for components
implementing the design. The compiler, part of my PhD work at the MIT Al Lab, appears to
have been the first of its kind.

We also apply these concepts in designing innovative, computer-controlled machines. While
most computer-controlled machines evolved from manual machines, or imitation of humans, we
examine the design space to find new approaches that exploit computer control to simplify the
mechanical system. We also hope that the set-based approach, and the associated theory of
design relationships, will support construction of "maps of the design space" that can be
communicated in journal articles, removing an important obstacle to treating design as academic
research. Currently funded projects include a milling machine and a transfer press (consulti
project); proposals are in preparation for an internal combustion engine, an autonomous ve-
and two actuators: one with high stiffness to inertia ratio, one with high power to weight ratic

2) Basic concepts
The overall goal of this research is a computationally implemented theory, comparable to

optimization theory, but supporting multiple designers (agents) using multiple models and
making decisions simultaneously. Where game theory focuses on the conflict of objectives
among agents, this theory focuses on the conflict of information, prescribing local decisions
based on partial information.

Early research created a formalism, called the Labeled Interval Calculus (LIC), for concurrent
reasoning over networks of ternary relationships about the feasibility of sets of possibilities. The
calculus extends the basic notion of interval constraint propagation (or interval arithmetic) in
several ways: 1) It adds "inverse" operations. 2) It uses "labels" to assign various meanings to
intervals. 3) It combines these into inference rules that produce provably correct conclusions
about feasibility.

e

rr

Figure: Designing a gun mount
These ideas can be understood through an example. Suppose we are designing mounts for an

old-fashioned naval gun (figure). We want the gun to aim steadily at every elevation e (relative
to the horizon) between 0 and 40 degrees, even though the ship may be rolling at any angle r
(also relative the horizon) between -20 and 20 degrees. Thus, the mount angle m must move
from -20 through 60 degrees.

To formalize this inference, let E be the interval of values for e, written <e 0 40>, R = <r
-20 20> and let G be the relationship e + r - m = 0. Define Range(G,ER) to produce the
interval of values for m which is compatible with E and R under the relationship G; that is M =

300

{m I 3e e E, 3r e R satisfying G } = <m -20 60>. This is (for this "monotonic" equation) just
interval propagation or interval arithmetic in the usual sense. We can perform the operation by
substituting values for the endpoints of E and R into G , then selecting the minimum and
maximum of the results as the endpoints of M.

e + r M in

0 + -20 -20
0 + 20 20
40 + -20 20
40 + 20 60

Range(G,E,R) = M = <M -20 60>
The operation defined, we can formulate the inference rule:
every <E > & every <R > & G • every Range(G,ER), where the rule is general, but stated

for ease of interpretation in symbols specific to this problem. In the mechanical compiler,
equations were linked into a full network based on the schematic, and each inference often
triggered more.

Now to invert the problem. Suppose we have a mount design capable of producing angles m
from -20 to 60, and want to know what elevations we can fire despite a -20 to 20 degree roll. We
need another operation, Domain(G,MR) = { e I Vr r R, 3mn e M satisfying G). Domain selects
the two central results of the endpoint substitution.

m - r = e
-20 - 20 -40
-20 - -20 0
60 - 20 40
60 - -20 80

Domain(G,M,R) = E = <e 0 40 >
In fact, Domain(GX,Y) = Z if and only if Range(G,YZ) = X. Domain is an inverse to Range,

in much the sense that division is a inverse to multiplication. Of course, we also need another
inference rule:

every <R > & only <M > & G * only Domain(G,R,M).
Neither inference is always correct: the second, for example, depends on m and e varying

independently, "causing" the variation in r. The mechanical design compiler used another level
of labels indicating whether variables were fixed at manufacture or changed during operations, as
well as some useful but ad hoc assumptions about the problems, to address this issue; current
research seeks a formal representation for such causal reasoning. At least three kinds of"causality" turn out to be relevant.

There is another useful "inverse" we call Sufficient-Points, defined by Sufficient-Points(G,
M, E) = (r I Range(G, (r }, E) ; M). A total of 16 propagation rules, together with abstraction
and elimination rules, were used in the compiler.

3. Recent results
Nothing in the formulation of the operations or inferences above restricts them to the

algebraic, monotonic equations covered by the LIC. Recent work generalizes them.
Bain's master's thesis (1992) extends the operations to all convex ternary equations, as

required for some mechanical systems, demonstrating that monotonicity is not required.
Chen's PhD thesis (1992) extends the operations from algebraic to matrix equations. For

matrix/vector equations of the form Ax=b, the three fundamental operations have a total of
twelve variants. The interval matrix arithmetic community, an applied mathematics community
with some 2000 published papers, had independently discovered 5 of the twelve variants, but
apparently has not identified the general forms. This suggests that the LIC may represent a new
"twig" of mathematical research.

301

Chen applied these processes to simple finite element problems, suggesting that it may be
possible to use finite element methods not to analyze a completed design, but to reason about the
feasible designs. He is now applying his work to robust control system design.

Lin's PhD thesis (1992) inductively extends the LIC operations to work on sets of intervals
(represented by "quadrevals"). Propagation operations are defined on quadrevals, whose
elements are connected by interval relationships defined using the LIC operations. A second
extension is to "octervals": sets of sets of intervals. These higher order constructs turn out to be
equivalent, without labels, to the labeled intervals, and each operation on them to several LIC
inferences. They therefore provide an equivalent formulation for the LIC, which can be used to
establish completeness of the LIC. These results then can be used to demonstrate that the LIC
cannot solve the "causality problem" mentioned above, without introducing new concepts.

4. Current and near term research
While my ultimate goal is an implemented axiomatization, I lack John von Neumann's skills

and proceed through mutually supporting sub-projects (concurrently, of course.)
a) The national Automated Configuration Design System (ACDS). Working programs

provide insight. This large scale implementation of the distributed set-based design concept is
led by Bill Birmingham (of the UM EECS department), and includes Chelsea White (Chairman,
Industrial and Operations Engineering), Dan Atkins (Dean, Information and Library Science),
and Mike Wellman and Edward Durfee of EECS. Like the MDC, ACDS will accept a schematic
and other specifications, and select implementing components (initially from catalogs, later
including parametrically designed components). However, components may be mechanical,
electronic, and software; nationwide vendors will "bid" over electronic networks, supporting"agile manufacturing". ACDS will test the following extensions to theory.

b) Causal reasoning in design: discussed above.
c) Extension of interval based methods to reasoning about utility. The LIC can only

eliminate provably infeasible solutions; the MDC used centralized optimization methods. Here,
each interface variable between problem components will be controlled by one of the agents
involved. Other agents will provide intervals of possible marginal utility on the variable;
intervals are required because the marginal utility depends in part on decisions not yet made.
Chelsea White's Imprecisely Specified Multi-Attribute Utility Theory will be modified to allow
the deciding agent to eliminate Pareto-dominated solutions. LIC extensions will prove that at
least one of the dominant solutions will be feasible.

d) Stochastic decision procedures. The previous mechanisms cannot guarantee convergence;
the stochastic approaches considered here can. Controlling agents will transmit probability
distributions on their selection of interface values. They will use genetic algorithms (and other
standard methods) to achieve "conceptual robustness" against the "conceptual noise" imposed by
their uncertainty about the decisions of other team members. They will consider the value of
time in determining whether to eliminate designs with utilities strongly dependent on other's
decisions.

e) Axiomatization. A more fundamental, broader approach will assume a local perspective,
and explicitly represent the sources of variation, to provide a fully axiomatic discussion of the
actions appropriate for an agent operating in a concurrent engineering network.

302

Constraint Programming in Constraint Nets

Ying Zhang Alan K. Mackworth "
Department of Computer Science Department of Computer Science

University of British Columbia University of British Columbia
Vancouver, B.C. Vancouver, B.C.
Canada V6T 1Z2 Canada V6T 1Z2
zhangtocs.ubc.ca mack@cs.ubc.ca

Abstract
We view constraints as relations and constraint satisfaction as a dynamic process of approaching a

stable equilibrium. We have developed an algebraic model of dynamics, called Constraint Nets, to provide
a real-time programming semantics and to model and analyze dynamic systems. In this paper, we explore
the relationship between constraint satisfaction and constraint nets by showing how to implement various
constraint methods on constraint nets.

1 Motivation

Constraints are relations among entities. Constraint satisfaction can be viewed in two different ways. First,
in the logical deductive view, a constraint system is a structure (D, ý-), where D is a set of constraints and
F- is an entailment relation between constraints [20]. In this view, constraint satisfaction is seen as a process
involving multiple agents concurrently interacting on the store-as-constraint system by checking entailment
and consistency relations and refining the system monotonically. This approach is useful in database or
knowledge-based systems, and can be embedded in logic programming languages [2, 5, 9]. Characteristically,
the global constraint is not explicitly represented, even though for any given relation tuple the system is able
to check whether or not it is entailed.

An alternative view, more appropriate for real-time embedded systems, is to formulate the constraint
satisfaction problem as finding a relation tuple that is entailed by a given set of constraints [12]. In this paper,
we present an approach to this problem. In this approach, constraint satisfaction is a dynamic process with
each solution as a stable equilibrium, and the solution set as an attractor of the process. "Monotonicity" is
characterized by a Liapunov function, representing the "distance" to the set of solutions over time. Moreover,
soft as well as hard constraints can be represented and solved. This approach has been taken in neural nets
[18], optimization, graphical simulation [16] and robot control [15]; however, it has not yet been investigated
seriously in the area of constraint programming.

We have developed and implemented an algebraic model of dynamics, called Constraint Nets (CN), to
provide a real-time programming semantics [22] and to model and analyze robotic systems [23]. Here we
investigate the relationship between constraint satisfaction and constraint nets. The rest of this paper is
organized as follows. Section 2 describes some basic concepts of dynamic systems. Section 3 introduces Con-
straint Nets. Section 4 presents various constraint methods for solving global consistency and unconstrained
optimization problems. Section 5 discusses embedded constraint solvers and some implementation issues.
Section 6 concludes the paper.

2 Properties of Dynamic Systems

In this section, we review some basic concepts in metric spaces, dynamic systems and the relationship among
stability, attractors and Liapunov functions.

*SheU Canada Fellow, Canadian Institute for Advanced Research

303

2.1 Metric spaces

Let 'R be the set of all real numbers and R+ denote the set of all nonnegative real numbers. A metric on a
set X is a function d: X x X - R+ U {Ufo} which satisfies the following axioms for all x, y. : E X:

1. d(r, y) = d(y, r).

2. d(z, y) + d(y, z) > d(z, z).

3. d(z,y) = 0 iff x = y.

A metric space is a pair (X, d) where X is a set and d is a metric on X. In a metric space, d(z, y) is called
"the distance between x and y". Given a metric space, we can define the distance between a point and a set
of points as: d(z,X*) = inf,-ex. d(z, x).

For any point z* E X and (> 0, if {zld(r,z') :_ 4) D {fx}, we call this set the (-neighborhood of
z*, denoted Nl(x*). Similarly, for any subset X" C X, if {fld(x,X") : 4) D X*, we call this set the
t-neighborhood of X*, denoted N'(X").

Let 7 be a set of totally ordered time points which can be either discrete or continuous. A trace
v : T - X is a function from a set of time points to a set of values. We use V•" to denote the set of all
traces from T to X. Given a metric space (X,d) and a trace v, a trace v approaches a value r' E X iff
limt-1 .d(v(t),x*) = 0: v approaches a set X" C X iff lim,_, d(v(t).X') = 0.

2.2 Dynamic systems

The term dynamic refers to phenomena that produce time-changing patterns, the characteristics of the
pattern at one time being interrelated with those at other times [10]. A process p : X - V7 is a function
from a set of values X to a set of traces V1- . Intuitively. p characterizes a set of traces which are solely
determined by their initial values. We use 0,(r) to denote the set of values in the trace of p(x), i.e.
S= {p(z)(t)lt E T}.

A point z* E X is an equilibrium (or firpoint) of the process p iff Vt.p(x')(t) = z'. An equilibrium z"
is stable (13] iff VNA(x')3,V6(xr)Vx E N 6'(z)op(a) C N'(x").

A set X" C X is an attractor [19] of the process p iff 3N.(X")Va" E N t (X)lt d(p(x)(t), X') = 0;
X" is an attractor in the large iff Vx E Xlimt, d(p(&)(t).X*) = 0. If {x}) is an attractor (in the large)
and r" is a stable equilibrium, a" is called an asymptotically stable equilibrium (in the large).

2.3 Liapunov functions

Let X" C X and fl = N'(X") for some t > 0. A Liapunov function for X" and a process p : X - VTX is a
function V : Q - R., satisfying:

1. V, Z' E 1, V(X) < V(x') iff d(x, X*) < d(x', X),

2. Vz E QVt, V(p(x)(t)) < V(x).

The first condition states that V has a local minimum at x" E X". The second condition guarantees that
V moves downhill along any traces of p starting at x E Q2. This definition is a simplified version of the one
given in [10]. The following two theorems are similar to those in [10].

Theorem 1 An equilibrium z' E X of a process p is stable if there exists a Liapunov function V for la*)
and p.

Proof: Let fQ be the domain of V, which is an ('-neighborhood of x for some c' > 0. Given an (-neighborhood
N'(z') of x', let 6 = min(,('), we have a 6-neighborhood N 6(x") C Q, therefore, Vx E N 6(xa)Op(x) C
N'(x'). 0

Theorem 2 Suppose a process p satisfies the following condition: for any r' E X, if there is x such that
p(z) approaches x*. then r' is an equilibrium. A set of stable equilibria X" C X of the process p is an
attractor if there exists a Liapunor function V for X- and p, such that V satisfies the following conditions:

304

I. V is continuous, i.e. d(x,z') -- 0 implies IV(x) - V(z')I - 0.
2. YZ E OW~, v(p(r)(1)) < V(x) if x V X".

Furthermore, if fl = X, X' is an attractor in the large.

Proof: For any X E 11, since V is continuous, limt-. V(p(z)(t)) = V(limt-... p(z)(t)) = V(r'). We can
prove that z* E X" since otherwise according to Condition 2, z" cannot be an equilibrium. If = X, X" is
an attractor in the large. 0

3 Constraint Nets: A General Model of Dynamics

In this section, we first introduce Constraint Nets, a model for dynamic systems, then examine the relation-
ship between constraint nets and constraint satisfaction.

3.1 Constraint Nets

A constraint net is composed of transductions and locations. A transduction is any mapping from a tuple
of input traces to an output trace which is causal, viz. the output value at any time is determined by the
input values prior to or at that time. Transductions are mathematical models of transformational processes.

There are two elementary types of transductions for dynamic systems: transliterations and delays. A
transliteration f-r is a pointwise extension of a function f over a time set T. We use 6(init) and f(init) to
denote a unit delay in a discrete system and an integration in a continuous system respectively with init as
the initial value.

A constraint net is a triple C =- (Lc, Td, Cn), where Lc is a set of locations, Td is a set of transduc-
tions, each of which is associated with a tuple of input ports and an output port. Cn is a set of directed
connections between locations and ports of transductions. with the following restriction: (1) there is at most
one connection pointing to each location, (2) each port of a transduction connects to .: unique location and
(3) no location is isolated.

A location is an input if there is no connection pointing to it otherwise it is an output. A constraint net
is closed if it has no input location otherwise it is open. We use CN(1, O) to denote a module with a set of
input locations I and a set of output locations 0 as the interface.

The graphical representation of a constraint net is a bipartite directed graph where locations are rep-
resented by circles, transductions by boxes and connections by arcs, each from a port of a transduction to a
location or vice versa.

Semantically, each location I denotes a trace x and each transduction FT corresponds to an equation
- F-(zx,..., z,). A constraint net corresponds to a set of equations; its semantics is the least fixpoint of

the equation set [22].
In general, constraint nets can model hybrid dynamic systems, with components operating on different

time structures or triggered by events. In this paper, we focus on only two types of constraint nets: discrete
transition systems and continuous integration systems, corresponding respectively to two different types of
constraint solvers.

3.2 Constraint solvers

An output location is a state location if it is an output of a unit delay or an integration. A state of a
constraint net is a mapping from the set of state locations to a set of values.

A constraint solver can be regarded as a special kind of constraint net which is closed and state-
determined, i.e. a state trace is determined by its initial state. A constraint solver CS defines a process
p : S --. V where S is a set of states and Vs is a set of state traces. A (stable) equilibrium of p is called a
(stable) equilibrium of CS; an attractor of p is called an attractor of CS.

CS solves C iff (1) every solution of C is a stable equilibrium of CS and (2) the solution set of C is an
attractor of CS; CS solves C globally iff, in addition, the solution set of C is an attractor in the large.

Lemma 1 If CS solves C globally then every equilibrium of CS is a solution of C.

Proof: Trivial. 0

305

We discuss here two basic types of constraint solvers: state transition systems for discrete cases and
state integration systems for continuous cases. A state transition system is a pair (S, f) where S is the set
of states and f : S -- S is the state transition function. A state transition system can be represented by a
constraint net with a transliteration fT and a unit delay 6(s0) where so E S is an initial state (Fig. 1). The
solution of this net is an infinite sequence p(so) = so, f(so). . . f (so)....

T s s(0

Figure 1: A constr'aint net representing (S, f)

Clearly, a state s* E S is an equilibrium of a state transition system (S, f) iff s* = f(s").

Lemma 2 Let (S,d) be a metric space. An equilibrium s" in a state transition system is stable if 30 =
N'(s*), Vs E Q, d(f(s): f(s*)) < d(s, s*). Moreover, s" is asymptotically stable if 3Q, Vs E 9, d(f(s), f(s")) <
kd(s, s*) for O < k < 1. If Q = S. s' is an asymptotically stable equilibrium in the large.

Proof: Let V(s) = d(s. s). It is easy to see that V' is a Liapunov function for s" and (S. f). -0
Integration is a basic transduction on continuous time structures. A state integration system is a

differential equation d' = f(s)' which can be represented by a constraint net with a transliteration fr and
an integration f(so) where so E S is an initial state (Fig. 2).

S.s

Et
&' f~so)

Figure 2: A constraint net representing 7 = f(s)

Clearly, a state s? E S is an equilibrium of a state integration system k = f(s) iff f(s') = 0.

Lemma 3 An equilibrium s" in a state integration system is stable if f is continuous at s' and s' is a
local minimum of - f f(s)ds. Moreover, s" is asymptotically stable if it is the unique minimum in its
neighborhood. If there is no other equilibrium and s" is the global minimal point, s* is an asymptotically
stable equilibrium in the large.

Proof: Let V(s) = -f f(s)ds. It is easy to check that (1) r < 0 and (2) since ? is a local minimum of
V, there is a neighborhood of s" such that V(s) <_ V(s') iff d(s, s*) < d(s', sO). Therefore V is a Liapunov
function for s* and d = f(s). 0

4 Properties of Constraint Methods
In this section, we examine various constraint methods and their properties. In particular, we discuss two
types of constraint satisfaction problems, namely, global consistency and unconstrained optimization, for
four classes of relations: relations on finite domains, linear, convex and nonlinear relations in n-dimensional
Euclidean space (R", d,), where d.(x, y) = Ix- yI = V/(Xl -Yl) 2 + ...(zn - y.)2

Global consistency corresponds to solving hard constraints and unconstrained optimization corresponds
to solving soft constraints. A problem of the first kind can be translated into one of the second by introducing
an energy function representing the degree of global consistency.

'If s is a tuple, & = f(s) represents a set of equations.

306

4.1 Unconstrained optimization

The problem of unconstrained optimization is to minimize an energy function C : 'R' - R. Here we first
discuss two methods for this problem: the gradient method (GM) [161 and Newton's method (NM) [191, and
then study the schema model (SM) for minimizing an energy function C : (0, 1]" - R.

4.1.1 Gradient method

The gradient method is based on the gradient descent algorithm, where state variables slide downhill in the
opposite direction of the gradient. Formally, if the function to be minimized is C(x) where x = (xZ, .. -n),

then at any point, the vector that points towards the direction of maximum increase of C is the gradient of
C. Therefore, the following gradient descent equations model the gradient method:

dxi
-= _ k- >o (>)

dt 'Ox,

Let X" = {zxijx is a true local minimum of C}2 and Y" = {jx*Ix is a global minimum of C}. Let GM
be a constraint net representing the gradient descent equations (1). The following theorem specifies the
conditions under which GM solves the problems X" and *'.

Theorem 3 GM solves X if a" is continuous at every x* E X*. GM solves Y' if, in addition, C is bounded
from below. GM solves Y* globally if, in addition, C is convex3.

Proof: According to Lemma 3 every solution is a stable equilibrium. According to Theorem 2, by letting &
be a Liapunov function, we can prove that X* is an attractor. If C is convex. Y* contains all of the equilibria,
therefore, the set of global minima is the attractor in the large. 0

4.1.2 Newton's method

Newton's method is to minimize a second-order approximation of the given energy function, at each iterative
step. Let AC = T and J be the .lacobian of AM. At each step with current point x). Newton's method is
to minimize the function:

(x) = .(x�(k)) + AcT(x(k))(x - X1k)) + I(- X (k))TJ(X(k))(x -- r tk).

Let • - 0, we have:
,A(X k1) + J(Z(k))(" - x(k)) = 0.

The solution of the above equation becomes the next point, i.e.

X(k+l) = x(k) _ j-1(xTk))A.

Newton's method defines a state transition system (?", f) where f(x) = x - J-1 (x)At(x).
Let NM be the constraint net representing Newton's method. The following theorem specifies the

conditions under which NM solves the problem X* and Y*.

Theorem 4 NM solves X* if IJ(z*)l 6 0 at every x* E X*, i.e. C is strictly convex at x5 . NM solves Y*
if, in addition, E is bounded from below. NM solves Y* globally if, in addition, C is convex.

Proof: First, we prove that x* = f(zx) and IJ(z*)l 6 0 implies x* is asymptotically stable. Let R be the
Jacobian of f. It is easy to check that IR(z*)l = 0. There exists a neighborhood of x*, N'(x*), for any
X E Nl(x*), If(x) - f(x*)j _< kjx - x*1 for 0 < k < 1. According to Lemma 2, x* is asymptotically stable.
If C is convex, there is no other equilibrium, so that x* is asymptotically stable in the large. 0

Here we assume that the Jacobian and its inverse are obtained off-line. Newton's method can also be
used to solve a set of nonlinear equations g(x) = 0 by replacing At with g.

2Tlis excludes flat maximum and saddle surfaces.
3 A function f is convex iff for any A E (0,1). f(.r + (1 - A)y) <5 \f(z) + (I - A)f(y); it is strictly convex iff the inequality is

strict. Obviously, a strictly convex function has a unique minimal point. Linear functions are convex, but not strictly convex.
A quadratic function xTAIz + cTz is convex if M is semi-positive definite; it is strictly convex if M is positive definite.

307

4.1.3 Schema model

The schema model has been used for finite constraint satisfaction in the PDP framework (I18. BasicallY, there
is a set of units, each can be on or off; constraints between units are represented by weights on connections.
The energy is typically a quadratic function in the following form:

C(a) = -(Ei,jwiiaiai + Eibiai) = -(aTWa + bTa)

where ai E [0, 1] indicates the activation value and bi specifies the bias for unit i, wij represents the constraint
between two units i and j. wij is positive if units i and j support each other, it is negative if the units are
against each other and it is zero if the units have no effect on each other.

There are various methods for solving this problem. The schema model [18] provides the simpliest
discrete relaxation method. Let ni(a) = 2L = -Ejwijaj - bi. The schema model defines a state transition
system ([0, 1]", f) where f = (ft,.. .f,) with fi(a) = ai - ni(a)ai if ni(a) > 0 and fi(a) = ai - ni(a)(1 - a,)
otherwise. In other words, fi(a) = (I - Ini(a)j)ai - min(O, ni(a)).

Theorem 5 Let SM be a constraint net representing the schema model with Ini(a)l < 1 for any i and a.
SM solves the set of mininmna of F. denoted A'.

Proof: Let a(k+I) denote f(a(k)). First. because Ini(a)l < 1, a~k) E [0, 1]' implies a(k+l) E [0. 1]". Therefore
f is well defined. Second, for each minimum a* of C, and for any i, either (1) ni(a*) = 0 or (2) ni(a') > 0
and a* = 0 or (3) ni(a*) < 0 and a* = 1. Therefore a* is an equilibrium. Now we prove that a* is stable.
Let NI(a") be a neighborhood such that Va E N'(a*) and for any i if ni(a*) # 0, then ni(a) and ni(a*) have
the same sign otherwise if ni(a) > 0, then a, >, a! otherwise ai < a*. Such a neighborhood exists because
ni is continuous. Considering Ifi(a) - afl, there are four cases.

1. ni(a*) > 0: In this case. a' = 0 and Ifi(a) - a*I = Jfi(a)l = 11 - ni(a)l x jail < jai - a-l.

2. ni(a*) < 0: In this case, a7 = I and Ifi(a) - a7I = If,(a) - 11 = 1 + ni(a)l x jai - 115 jai - aTf.

3. ni(a°) = 0 and ni(a) >_ 0: Ifi(a) - a'f = ((l - ni(a))ai - a*I = jai - a' - ni(a)a•i K ja, - aOJ.

4. ni(a') = 0 and ni(a) < 0: Ifi(a)-a' = [(I +ni(a))ai -ni(a)-a*a = jai-a'. -ni(a)(1 -ai)] <) jai -a a.

Therefore Va E N'(a'), Ifi(a) - a-I < jai - a0I and If(a) - a*1 5 la - a"1. According to Lemma 2, a* is
stable. Furthermore, let V(a) = la - A*I be defined on a neighborhood of A*, V is a Liapunov function for
A* and SM. According to Theorem 2. A* is an attractor. 0

4.2 Global consistency

Unconstrained optimization methods can also be used to solve a set of equations gi(x) = 0. i = Ln, by letting
COW(x) = I..nwigi(r) where wi > 0 and Eiu'i = 1. If a constraint solver CS solves min$,'F(x), CS solves
g(X) = 0. Inequality constraints can be transformed into equality constraints. There are two approaches.
Let gi(x) < 0 be an inequality constraint, the equivalent equality constraint is (i) max(O, gi(x)) = 0 or (ii)
gi(x) + z2 = 0 where z is introduced as an extra variable. Similarly, the schema model can be used to solve
a set of constraints with finite domains, by assigning each possible value a unit and each constraint between
two values a weight.

However, in many cases it is more efficient to solve a set of (in)equality constraints directly. Moreover,
a method for solving a set of equality constraints can also be used to solve an unconstrainted optimization
problem, since z° is a local extremum of E implies = 0. Similarly, the problem of finite domain
constraint satisfaction can be solved directly on constraint nets.

Here we first discuss the projection method (PM) for solving (in)equality constraints, and then study
the method for solving global consistency of finite domain constraints (FM).

308

4.2.1 Projection method

A projection of a point x to a set R in a metric space (X, d) is a point PR(x) E R. such that d(x. PR(X)) =
d(r, R). Projections in the n-dimensional Euclidean space (1Z• ý d,) share the following properties.

Lemma 4 [8] Let R C 1Z" be closed and convex4 . The projection PR(x) of x to R exists and is unique for
every x, and (X - PR(x))T(y - PR(x)) < 0 for any Y E R.

Suppose we are given a system of convex and closed sets, Xi for i = L..n. The problem is to find x" E
niXi. Let P(r) = Px,(z) b.. a projection of x to a least satisfied set X1, i.e. d(x, XJ) = maxi d(x, Xi). The
projection method [8] for this problem defines a state transition system (Rn, f) where f(x) = z + A(P(z) - x)
for 0 < A < 2.

The following theorem is derived from a similar one in [8], however, the proof given here is simplified
by the use of Liapunov functions.

Theorem 6 Let PM be a constraint net representing the projection method. PM solves X" = nlXi globally
if all the Xi 's are convex.

Proof: First of all, it is easy to see that if x" is a solution, then x' = f(x'), i.e. x' is an equilibrium.Moreover, we can prove that If(x) - x*• _< Ix - x* for any x as follows.

If(x) - x' = Ix + A(P(x) - x) - x'

= Ix - X'1 2 + A]2 P(x) - X1 2 + 2A(x - x*)T(P(r)- _X)
= IX-11 2+(A 2 - 2A)IP(r)-x12 +2A(P(x)-X)T(p(x)-x")

_< Ix-x _I 2 - A(2- A))P(x) _ X12 according to Lemma 4
< IXx 12 since0<A<2.

According to Lemma 2, x* is stable.
Then, we can prove that X* is an attractor in the large. Let V(x) = Ix- Xj on R'. V(x) is a Liapunov

function on 1?" since V(f(x)) <_ Vkx) for any x. Moreover 1V(f(x)) < V(x) for any x V X' since for Pny

x' E X" and x V X', If(x) - x1I < Ix - x'J. In addition, v.e can prove that the process defined by PM
satisfies the condition in Theorem i, since i x' = x" implies lim, x"+1 - x'[= 0. Therefore
lim,_o IP(x") - x" = 0 and P(x') = x", so that x* is an equilibrium. According to Theorem 2. X" is an
attractor in the large. 0

The projection method can be used to solve a set, of inequality constraints. i.e. X, = fzjgi(x) < 0} for
convex function gi. Linear functions are convex. Therefore the projection method can be applied to a set of
linear inequalities Ax < b, where x = (xi x,) E 7%". Let Ai be the ith row of A. The projection of a
point x to a half space Aix - bi < 0 is defined as:

A W x if Aix - bi • 0
x- cAT otherwise

where c = (Air - bi)/IATI[. This reduces to the method described in [1). Without any modification, this
method can be also applied to a set of linear equalities, by simply replacing each linear equality gi(x) = 0
with two linear inequalities: gi(x) < 0 and -gi(x) _< 0.

There are various ways to modify this method for faster convergence. For instance, [3] gives a simultane-
ous projection method in which f(x) = Xz--AEiEIWi(Pi(x)-x) where 1 is an index set of violated constraints,
wi > 0 and EiE•wi = 1. [21] gives a method in which f(z) = x+A(Ps(x)-x) where S = {xI•iE1wgi(x) <_ 0}.
Furthermore, for a large set of inequalities, the problem can be decomposed into a set of K subproblems
with fk corresponding to the transition function of the kth subproblem. The whole problem can be solved
by combining the results of {ff fK}.

4 A set R in n-dimensional Euclidean space is convex iff for any .\ E (0,1), x, y E R implies Ax + (1 - .t)y E R. Clearly if 9 is
a convex function, {xlg(z) < 0) is a convex set.

309

4.2.2 Finite constraint satisfaction

Many problems can be formalized as finite constraint satisfaction problems (FCSPs). which can be repre-
sented by constraint networks [241. Formally, a constraint network C is a quadruple (V. dorn, A, con) where

"* V is a set of variables, {v 1 , V2. VN

"* associated with each variable vi is a finite domain di = dom(vi),

"* A is a set of arcs, {a,,a2, ... , a),

"* associated with each arc ai is a constraint con(ai) = ri(R•) where R, C V is a relation scheme and ri
is a set of relation tuples on Ri.

The solution set for the constraint network C is the join of all the relations, sol(C) = ri N. N . r,.
An FCSP can be solved using the schema model (SM) by assigning each possible value in the finite

domain of a variable a unit. The units of two values from the same variable are against each other; the units
of two values from different variables support each other if they are consistent. However, SM does not solve
an FCSP globally.

An FCSP can be solved directly using various methods [4, 6, 11, 12, 14]. Let Scherne(C) = {R1 ... 'R}
be the scheme of a constraint network C. The solution of a constraint network C is a network C', with
sol(C) = sol(C"), Scherne(C) = Scheme(C'), and r' = HR,(sol(C')) where IIR, is a projection operator.
Such a solution network is called a minimal network [14]. Here we present a relaxation method (FM) which
finds the solution network of a constraint network with an acyclic scheme. This kind of method has been
studied by many researchers, for instance. [7, 17, 24]. We examine the property of the method within the
framework of dynamic systems.

Let C be the set of constraint networks with the same scheme and solution set. We define a state
transition system (C, f) where f = {fi}a,EA with fi(ri) = nl{R,nR,•E) HR,(ri M r1).

Theorem 7 Let FM be a constraint net representing a state transition system (C, f). FM finds the solution
network globally in C if the scheme of C is acyclic.

Proof: First of all, it is clear that a solution ne';work (' is an equilibrium of the state transition system.
Now let us define a metric on the set C. Given a relation scheme R. the distance between two relation tuples
can be defined as dR(rlr2) = I(rIl - r 2) U (r2 - rl)I where Irl denotes the number of relation tuples. The

distance between two constraint networks in C can be defined as d(C 2 , C2) = scheme(c)d2(r1, r2). Let

us define a function L on C as: L(C) = VrScheme(C)Ir'. L is a Liapunov function for the solution network
C" and (C,f) since (1) L(CI) < L(C-2) iffd(Cl.C') <_ d(C2 ,C*) and (2) L(f(C)) < L(C) for any C E C.
Therefore C' is a stable equilibrium. Finally, we can prove that if the scheme of C is acyclic, C* is an
asymptotically stable equilibrium. For an acyclic network, an equilibrium implies a minimal network [24]
and clearly if C i6 C', L(f(C)) < L(C). According to Theorem 2, C' is asymptotically stable.O

5 Embedded Constraint Solvers and Implementation Issues

In this section, we consider two variations of constraint solvers. The first corresponds to open constraint
nets, for designing embedded control systems. The second corresponds to constraint nets with latency.

5.1 Embedded constraint solvers

One of the important applications of constraint solvers is the design of robot control systems [15]. There
are two kinds of embedded constraint solvers for this application. First, a constraint solver is coupled to
a dynamic environment. Second, a constraint solver is coupled to the plant of a robot. In both cases, the
embedded constraint solver is part of the robot controller. The combination of these two embeddings will
occur in real applications.

An embedded constraint solver coupled to an environment (resp. a plant) is an open constraint net
CN(I, 0), where the set of input locations I act as sensors of the environment (resp. the plant). Constraints

310

are relations on input and output values. A constraint net is an embedded constraint solver for the set
of constraints C and the environment (resp. the plant) iff the composition of the constraint net and the
environment (resp. the plant) solves C.

Consider the case of designing a tracking system S which chases a target T. Let r be the position of
S and zd be the position of T, the constraint to be satisfied is IX - Xidl = 0. Suppose we design a tracking
system with the following law: 7- = -k(x - z4) where Xd is an input traces. However, this system is not
an embedded constraint solver for Iz - Xdl = 0 if I dI > 0. A correct design is = - k(Z -zd).
To see why this is the right design, we define a Liapunov function V(x,Z d) = ½Ix - xd12 and observe that

(Z - Zd)(' - " 5) < 0. In reality, both zd and & can be inaccurate. However, the system is robust
with respect to the inaccuracy.

5.2 Implementation issues

Constraint solvers (or embedded constraint solvers) can be implemented as analog or digital circuits, or as
programs in multiprocessor environments. For a discrete constraint solver, the efficiency can be characterized
by the convergence rate of the method and the computation cost of the transition function. Constraint nets
are inherently parallel, while sequential computation can be considered as a special case. Clearly, for discrete
constraint solvers, except those embedded in dynamic environments, the computation time will not affect
the dynamic behaviors.

However, for a continuous constraint solver, latencies in the circuit may change the dynamic behavior
of the constraint solver totally. Consider a simple example: 2L = -kz with k > 0 solves r = 0 globally.di-
However, if there is a latency b in the wires, the actual equation becomes !-d = -kax(t - 6). In this case,
x = 0 is still an equilibrium, but it may not be an asymptotically stable equilibrium. In fact. if 6k > 2, it
is unstable at z = 0. Therefore, it is important at the design stage to model the possible latencies and to
choose the right value for k.

6 Conclusion
We have presented a unitary model of constraint satisfaction as a dynamic process. Various constraint
methods and their dynamic properties have been studied, and their applications to control system design are
examined. The Constraint Net model serves as a useful abstract target machine for constraint programming
languages, providing both semantics and pragmatics.

Acknowledgements: We wish to thank Uri Ascher, Peter Lawrence. Dinesh Pai. Nick Pippenger and
Runping Qi for valuable discussions and suggestions. This research was supported by the Natural Sciences
and Engineering Research Council and the Institute for Robotics and Intelligent Systems.

References

[1] S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6:382-392,
1954.

[2] A. Aiba, K. Sakai, Y. Sato, and D.J. Hawley. Constraint logic programming language cal. In Proceedings
of the International Conference on Fifth Generation Computer Systems, pages 263 -276, 1988.

[3] Y. Censor and T. Elfving. New method for linear inequalities. Linear Algebra and Its Applications,
42:199-211, 1982.

[4] R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages
285 - 293. Wiley, N.Y.. 1992.

5 1n practice, x - xd would be sensed.

311

(5] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aýgoun, T. Graf, and F. Berthier. The constraint
logic programming language CHIP. In Proceedings of the International Conference on Fifth Generation
Computer Systems, pages 693 - 702, 1988.

[61 E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proceeding of
AAAI-90, 1990.

[7] E. C. Freuder. Completable representations of constraint satisfaction problems. In KR-91, pages 186 -
195, 1991.

[8] L.G. Gubin, B.T. Polyak, and E.V. Raik. The method of projections for finding the common point of
convex sets. U.S.S.R. Computational Mathematics and Mathematical Physics, pages 1-24, 1967.

(9] J. Jaffar and J.L. Lassez. Constraint logic programming. In ACM Principles of Programming Languages,
pages 111 - 119, 1987.

[10] D.G. Luenberger. Introduction to Dynamic Systems: Theory, Models and Applications. John Wiley &
Sons, 1979.

[11] A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelli-
gence, pages 276 - 285. Wiley, N.Y., 1992.

[12] A.K. Mackworth. The logic of constraint satisfaction. Artificial Intelligence, 58:3-20. 1992.

[13] M. D. Mesarovic and Y. Takahara. General Systems Theory: Mathematical Foundations. Academic
Press, 1975.

[14] U. Montanari. Networks of constraints: Fundamental properties and applications to picture processing.
Information Science, 7:95-132, 1974.

(15] D. K. Pai. Least constraint: A framework for the control of complex mechanicaJ systems. In Proceedings
of American Control Conference, pages 426 - 432, Boston, 1991.

[16] J. Platt. Constraint methods for neural networks and computer graphics. Technical Report Caltech-
CS-TR-89-07. Department of Computer Science. California Institute of Technology. 1989.

[17] F. Rossi and U. Montanari. Exact solution in linear time of networks of constraints using perfect
relaxation. In Proceedings First Int. Principles of Knowledge Representation and Reasoning, Toronto,
Ontario? Canada, pages 394-399, May 1989.

[18] D. E. Rumelhart and J. L. McClelland, editors. Parallel Distributed Processing - Exploration in the
Microstructure of Cognition. MIT Press, 1986.

[19] J. T. Sandfur. Discrete Dynamical Systems: Theory and Applications. Clarendon Press, 1990.

[20] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint pro-
gramming. Technical Report SSL-90-86, Palo Alto Research Center, 1990.

[21] K. Yang and K.G. Murty. New iterative methods for linear inequalities. Unpublished.

[22] Y. Zhang and A. K. Mackworth. Constraint nets: A semantic model of real-time embedded systems.
Technical Report 92-10, Department of Computer Science, University of British Columbia, 1992.

[23] Y. Zhang and A. K. Mackworth. Will the robot do the right thing? Technical Report 92-31, Department
of Computer Science, University of British Columbia, 1992.

[24] Y. Zhang and A. K. Mackworth. Parallel and distributed constraint satisfaction: Complexity, algo-
rithms and experiments. In Laveen N. Kanal, editor, Parallel Processing for Artificial Intelligence.
Elsevier/North Holland, 1993. to appear.

312

A Constraint Based Scientific Programming Language

Richard Zippel
Cornell University
Ithaca, NY 14853

rzQcs cornell. edu

February 15, 1993

Scientific programs tend to be quite large and complex, and their creation is quite error prone.
We have been pursuing a program transformation approach to the creation of scientific programs,
where the transforms can be conventional compiler optimizations like loop unrolling, strength reduc-
tion and common subexpression elimination, and more mathematical transformation like applying
Newton's method to a coupled system of algebraic equations or a Runge-Kutta method to a system
of ordinary or partial differential equations.

The language to which these transforms is applied contains, by necessity, a combination of con-
ventional programming constructs and constructs from continuous mathematics such as differential
equations, integrals and function spaces. We call this language SPL. A very appropriate way to
combine these different constructs is to begin with a conventional programming language, but one
where the type system is extended to include types like continuous functions and further extend it
to use constraints to represent the algebraic and differential equations of the scientific problem.

The constraints are the mechanism by which the physical problem is modeled. Two additional
mechanisms are introduced in the constraint system to provide sufficient physical modeling flexibil-
ity: (1) the constraints themselves are scoped in much the same manner as variable bindings, and
(2) predicates are provided to control when the constraints are applicable. The first mechanism
permits standard code walking and analysis tools to be used on the the scientific programs, while
the second allows us to model changes in the physical model that occur when, say, two mechanical
bodies come into contact, or in combustion, the fuel is completely consumed.

The constraint programs that we produce are not executable in the sense that conventional con-
straint networks are. Rather they are interpreted as a specification of what needs to be computed.
By sequences of mathematical transformations we are able to compile these high level scientific
constraint programs into executable code.

1 SPL Design Goals

We note that there are two different communities that engage in program transformations, but
which use rather different languages and techniques. On the one hand there are those involved
in compilers, program transformations and partial evaluation in the computer science community.
This community, or communities, is interested in source to source transformations of programming
languages such as loop unrolling, common subexpression elimination and strength reduction. It is
this community that one usually thinks of when the phrase "program transformations' is mentioned.

On the other hand there is the numerical analysis/scientific computing community, whose trans-
formations are on mathematical objects like differential equations. Typical of their transformations

313

are the following.

"* Approximation

sin x = * X - + 12-0

"* Horner's rule

x- 6 + 12-0=Z -x2 >6 1

"* discretization
41Z = fn) == At = f(zn+l)

Although the numerical analysis/scientific computing community usually does not think of these
transformations as operating on programs, notice that the discretizations of ordinary differential
equations convert a single equation into a sequence of assignments.

One of the goals of the on-going design of SPL is that be able to support both types of program
transformations and provide a basis for cooperation between these two communities. As a con-
sequence, SPL must be able to represent the constructs of conventional programming languages:
variables, arrays, structures, loops, recursions, etc. and it must must support the constructs of the
scientific computing community: continuous functions, differential equations, function spaces, etc.

In addition, we feel it important that it be possible to specify scientific computations in SPL
in a way that does not bias how the computation is actually performed. Thus we want to be able
to say that a certain function is the solution of a differential equation, with out specifying the
numerical method to be used to compute the function. This means that by specifying the proper
program transformations on will be able to produce programs that use computational methods that
are appropriate for different architectures.

2 SPL Examples

This section gives a couple of examples of the SPL language and a few of the transformations
that are being developed. For expository purposes we have used an infix syntax for SPL programs
although we use a parenthesized Lisp syntax in our implementations. The examples given here are
quite simple, and our main purpose is to illustrate the use of the constraints and how they are
transformed in to -:ode.

2.1 System of Algebraic Equations

Assume we wish to know the real values of y such that there is exists real numbers x satisfying

X2 + y3 = 5,

zy + y2 = 3.

The following program specifies this computation.

declare z, y E R;
[T=* {x 2 + y = 5,zy+ y2 3);

print(y);
3

314

The first statement of the program indicates that x and y are only allowed to take on real
values. The square brackets delimit the scope of a set of constraints. The constraints themselves
are qualified and are written with the syntax:

(predicate) == (set of mathematical equations)

The set of constraints indicated is to be enforced only within the square brackets and only when
the predicate is true.

In the program above, the constraints always take effect since the predicate is T (= true). The
body (just a print statement in this case) is executed for every (z, y) pair that satisfies the system
of equations, not just once. (In this case, the three real values that y can take on would be printed.)

There are two things to note about the program above. First, it is a mixture of mathematical
constructs and the programming constructs. The print statement is a programming construct while
the constraint equations are mathematical and do not themselves contain computational content.
Second, the program above is not executable in the form given. Some transformations need to be
applied to transform the constraints to a more conventional programming paradigm.

One approach would be as follows. Since the body of the program does not involve x, it makes
sense to try to eliminate it from the constraint equations. If the "lexical Grobner basis transform"
is applied to constraint "T ==* {J2 + y3 ' 5, zy + y2 = 3}" we end up with:

declare x, y E]R;

C T=*:,fy5 +y 4 - 11y2+9=O,x+ .+I+•= O;
print (y);
J

Now since the constraint in x is linear, any real value of y will give a real value of y. So we can
drop the second constraint and all reference to x.

declare y E R;
[T==*{y 5 +y 4 -11y 2 +..-9-O);

print(y);
I

At this point we can apply the "Newton's method transformation"

declare y E R;
loop y - FindlnitialSoln({y5 + y4 - Iy 2 +9= 0}) do {;

loop y -Y L- 5 y*+4y-_11y ,
until convergence;

print(y);

The phrase until convergence covers a number of details will be discussed in the full paper.

2.2 RC Circuit

Assume we have a simple RC circuit driven by a voltage of Vi(and). The device equations for the
resistor and capacitor give the constraints

Vi(t) - V(t) =R. -l(t),

dt"

In SPL, we can write this as

315

declare V, I E C¶(R+ "-);

It E + R {V(t) - V(t) = R- 1(t), 1(t) = C!!A)};
print (V(t));
J

Again, the body only involves V, so we can eliminate I from the equations to give

declare V E C'(R+ --- R);
Ut E R+ • {fV(t) - V(t) = RCAP) 1;

print(V(t));
I

At this point we have a constraint on continuous functions that involves a derivative. The usual
constraint propagation techniques do not work in this case. In the work of Stallman, Steele and
Sussman on circuits, they took the approach of writing the constraints in the frequency domain,
where the differential equation becomes a linear equation. In our context that corresponds to taking
the Fourier transform of the above program:

declare tv E ".F>CC(R+ - R);
Is E C • {ff'{•(t)} - v(s) = sRCv(s)};

print(. ('-If v(s) }));

In this case however, we would like to generate a standard transient analysis and thus want to
numerically integrate the differential equation. This is done by discretizing time using the backward
Euler formula.

declare V/] E Cw(- R:);
In E {O, 1,2,...} I {vf(n At) - V[, + 1] = RC V[n+I1-V[ln

print(Vf));

At this point the continuous function V(t) has been discretized into an array of numbers. Thus the
01' element of the array V[] should be V[i] = V(i At).

Isolating V[n + 11 and converting to a loop we have

declare Vf a Cc(-' R);In E {o, 1,2 } = v[n + 1] = (I + {) [v[,,] + " V,(nAt)]};"
print(VO);
I

At this point we could convert the program to one that is executable by converting the constraint
into an assignment and loop over values of n. Since no initial conditions have been provided, there
isn't much point in this.

316

2.3 Burgers' Equation Example

In this subsection we consider a partial differential equation, Burgers' equations:

49u 9u 192u
Ot + U•F = -- ''

with periodic boundary conditions: u(x + L, t) = u(z, t).
Now the initial program is a bit more complex:

D - Per(O, L);
declare u E CcO(D x R+ - R);

Q~rE D A i E(0,1) u +udu d2u 1

Et = 0 == u(Zt) = uo(Z);
print (u(Z,t));

3
)

D is the interval 0 to L made periodic. The declaration indicates that u is an infinitely dif-
ferentiable function from the direct sum of D and the positive real numbers to the real numbers.
The outer constraint is constrains u to satisfy Burger's equation when X is in D and when t is in
the time interval of interest. The inner constraint provides the initial conditions. This approach
(and the nesting of the constraints) allows us to state problems with different initial conditions in
a single program.

If time is discretized in uniform steps of length At, using the forward Euler method, we get the
following program

D - Per(0, L);

declare uf E C-.(D - R);

loop for nE {0,1,2,..., T/AI} do {
t zED ={±"dufn] + =

C it = 0 u[n](r) = uo(z);
print (u[n](x));

3

Notice that after the time discretization, unlike the simple circuit problem, the constraint is
still a differential equation not an algebraic equation. Further discretizations in space are needed
to convert this program into something that is close to executable. Nonetheless, at this point we
could apply compiler optimizations and parallelizations to the program (although in this case there
is not much to optimize).

3 Conclusions

We have presented some examples of a scientific programming language that combines constraints
with conventional programming tools. The constraints are used to represent the mathematical
aspects of the program, such as the differential or algebraic equations that functions must satisfy.

Programs in this language are converted into executable form using a library of program trans-
formations, which spans compiler optimizations, parallelizations and mathematical discretizations.

317

318

Author Index

Ait-Kaci, H., 1 Kasif, S., 149
Keirouz, W. T., 156

Barahona, P., 201 Keisu, T., 109
Benhamou, F., 239 Kirchner, C., 166
Boortz, K., 109 Kirchner, H 1
Brand, P., 109 Kramer, G. A., 156
Brodsky, A., 6 Kuper, G. M., 176
Brown Jr., A. L., 14

Lapalme, G., 184
Carlson, B., 109 Lassez, C., 6
Codognet, P., 201
Cruz, 1. F., 24 Mackworth, A. K., 303

Major, F., 184
Danieisson, B., 109 Mantha, S., 14
Dasiewicz, P., 279 McAloon, K., 189
Delcher, A. L., 149 Menezes, F., 201
Donikian, S., 36 Meyers, S., 211
Dubk, T., 46 Michaylov, S., 221
Duby, C. K., 211 Montanari, U., 230

Montelius, J., 109
Fages, F, 53
Fernando, T., 62 Older, W. J., 239
Frilhwirth, T., 82
Franzkn, T., 109 Pabon, J., 156
Freuder, E. C., 72 Pai, D. K., 250

Park, K., 294
Gao, H., 92 Pfenning, F., 221
Gleicher, M., 100 Podelski, A., 1

Hdgron, G., 36 Reiss, S. P., 211
Hanschke, P., 82 Rossi, F., 230
Haridi, S., 109 Rounds, W. C., 258
Hubbe, P. D., 72 Sahlin, D., 109

Imbert, J., 119 Sannella, M., 268
Savor, T., 279

J6gou, P., 132 Sj6land, T., 109
Janson, S., 109 Smith, D. R., 288
Johnson, M., 140 Smith, T. R., 294

319

TIetkoff, C., 189 Warren, D. S., 92
Turcotte, M., 184

Yap, C., 46
Vittek, M., 166

Zhang, G., 258
Wakayama, T., 14 Zhang, Y., 303
Ward, A. C., 299 Zippel, R., 313

320

